Ontologies Applied to Surgical Robotics

  • P. J. S. GonçalvesEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 418)


The paper presents current efforts and methods presented by the research community to represent knowledge to be used, in a machine readable format, for surgical robotics. Ontologies from the medical field are surveyed, to be aligned with robotic ontologies to obtain proper surgical robotic ontologies. The later, are valuable tools that combine surgical protocols, machine protocols, anatomical ontologies, and medical image data. An orthopaedic robot surgical ontology, for knowledge representation, is presented and briefly discussed. The system based on ontologies uses dedicated algorithms, devices and merges existing medical and robotic ontologies to obtain a common ontology framework.


Surgical robotics Ontologies Knowledge representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guarino, N.: Semantic matching: formal ontological distinctions for information organization, extraction, and integration. In: Pazienza, M. (ed.) Information Extraction a MultidisciplinaryApproach to an Emerging Information Technology. Lecture Notes in Computer Science, vol. 1299, pp. 139–170. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Schlenoff, C., Prestes, E., Madhavan, R., Gonçalves, P., Li, H., Balakirsky, S., Kramer, T., Miguelanez, E.: An IEEE standard ontology for robotics and automation. In: Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pp. 1337–1342 (2012)Google Scholar
  3. 3.
    Prestes, E., Carbonera, J.L., Fiorini, S.R., Jorge, V.A., Abel, M., Madhavan, R., Locoro, A., Gonçalves, P., Barreto, M.E., Habib, M., Chibani, A., Gérard, S., Amirat, Y., Schlenoff, C.: Towards a core ontology for robotics and automation. Robotics and Autonomous Systems 61(11), 1193–1204 (2013)CrossRefGoogle Scholar
  4. 4.
    Fiorini, S.R., Carbonera, J.L., Gonçalves, P., Jorge, V.A., Rey, V.F., Haidegger, T., Abel, M., Redfield, S.A., Balakirsky, S., Ragavan, V., Li, H., Schlenoff, C., Prestes, E.: Extensions to the core ontology for robotics and automation. Robotics and Computer-Integrated Manufacturing 33, 3–11 (2015). Special Issue on Knowledge Driven Robotics and ManufacturingCrossRefGoogle Scholar
  5. 5.
    Dogmus, Z., Erdem, E., Patoglu, V.: RehabRobo-Onto: Design, development and maintenance of a rehabilitation robotics ontology on the cloud. Robotics and Computer-Integrated Manufacturing 33, 100–109 (2015). Special Issue on Knowledge Driven Robotics and ManufacturingCrossRefGoogle Scholar
  6. 6.
    Mudunuri, R., Burgert, O., Neumuth, T.: Ontological modelling of surgical knowledge. In: Fischer, S., Maehle, E., Reischuk, R. (eds.) GI Jahrestagung. LNI., GI, vol. 154, pp. 1044–1054 (2009)Google Scholar
  7. 7.
    Perrone, R., Nessi, F., De Momi, E., Boriero, F., Capiluppi, M., Fiorini, P., Ferrigno, G.: Ontology-based modular architecture for surgical autonomous robots. In: The Hamlyn Symposium on Medical Robotics, p. 85 (2014)Google Scholar
  8. 8.
    Gonçalves, P.: Towards an ontology for orthopaedic surgery, application to hip resurfacing. In: Proceedings of the Hamlyn Symposium on Medical Robotics, London, UK, pp. 61–62, June 2013Google Scholar
  9. 9.
    Gonçalves, P.J., Torres, P.M.: Knowledge representation applied to robotic orthopedic surgery. Robotics and Computer-Integrated Manufacturing 33, 90–99 (2015). Special Issue on Knowledge Driven Robotics and ManufacturingCrossRefGoogle Scholar
  10. 10.
    Kati, D., Julliard, C., Wekerle, A.L., Kenngott, H., Mller-Stich, B., Dillmann, R., Speidel, S., Jannin, P., Gibaud, B.: Lapontospm: an ontology for laparoscopic surgeries and its application to surgical phase recognition. International Journal of Computer Assisted Radiology and Surgery, 1–8 (2015)Google Scholar
  11. 11.
    Machno, A., Jannin, P., Dameron, O., Korb, W., Scheuermann, G., Meixensberger, J.: Ontology for assessment studies of humancomputer-interaction in surgery. Artificial Intelligence in Medicine 63(2), 73–84 (2015)CrossRefGoogle Scholar
  12. 12.
    Rector, A., Nowlan, W.: The GALEN project. Comput. Methods Programs Biomed. 45, 75–78 (1994)CrossRefGoogle Scholar
  13. 13.
    Zweigenbaum, P.: Menelas: Coding and information retrieval from natural language patient discharge summaries. In: Advances in Health Telematics, 82–89. IOS Press (1995)Google Scholar
  14. 14.
    Spackman, K.A., Campbell, K.E., Cote, R.A.: SNOMED RT: A reference terminology for health care. J. of the American Medical Informatics Association, 640–644 (1997)Google Scholar
  15. 15.
    Pisanelli, D.M., Gangemi, A., Steve, G.: An ontological analysis of the UMLS metathesaurus. Proceedings AMIA 1998, vol. 5, pp. 810–814 (1998)Google Scholar
  16. 16.
    Wang, A.Y., Sable, J.H., Spackman, K.A.: The snomed clinical terms development process: refinement and analysis of content. In: Proc AMIA Symp., pp. 845–849 (2002)Google Scholar
  17. 17.
    Duan, L., Street, W.N., Xu, E.: Healthcare information systems: data mining methods in the creation of a clinical recommender system. Enterprise Information Systems 5(2), 169–181 (2011)CrossRefGoogle Scholar
  18. 18.
    Isern, D., Snchez, D., Moreno, A.: Ontology-driven execution of clinical guidelines. Computer Methods and Programs in Biomedicine 107(2), 122–139 (2012)CrossRefGoogle Scholar
  19. 19.
    Bouamrane, M.M., Rector, A., Hurrell, M.: Experience of using owl ontologies for automated inference of routine pre-operative screening tests. In: Patel-Schneider, P., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J., Horrocks, I., Glimm, B. (eds.) The Semantic Web ISWC 2010. Lecture Notes in Computer Science, vol. 6497, pp. 50–65. Springer, Heidelberg (2010)Google Scholar
  20. 20.
    Bright, T.J., Furuya, E.Y., Kuperman, G.J., Cimino, J.J., Bakken, S.: Development and evaluation of an ontology for guiding appropriate antibiotic prescribing. Journal of Biomedical Informatics 45(1), 120–128 (2012)CrossRefGoogle Scholar
  21. 21.
    Dieng-Kuntz, R., Minier, D., Ruzicka, M., Corby, F., Corby, O., Alamarguy, L.: Building and using a medical ontology for knowledge management and cooperative work in a health care network. Computers in Biology and Medicine 36, 871–892 (2006)CrossRefGoogle Scholar
  22. 22.
    Audette, M., Yang, H., Enquobahrie, A., Finet, J., Barre, S., Jannin, P., Ewend, M.: The application of textbook-based surgical ontologies to neurosurgery simulation requirements. International Journal of Computer Assisted Radiology and Surgery 6(1), 138–143 (2011)Google Scholar
  23. 23.
    Moigno, S.L., Charlet, J., Bourigault, D., Degoulet, P., Jaulent, M.: Terminology extraction from text to build an ontology in surgical intensive care. In: Proceedings of the AMIA 2002 Annual Symposium, pp. 430–434 (2002)Google Scholar
  24. 24.
    Neumuth, T., Czygan, M., Goldstein, D., Strauss, G., Meixensberger, J., Burgert, O.: Computer assisted acquisition of surgical process models with a sensors-driven ontology. In: M2CAI workshop, MICCAI, London (2009)Google Scholar
  25. 25.
    Herre, H.: General formal ontology (GFO): a foundational ontology for conceptual modelling. In: Poli, R., Healy, M., Kameas, A. (eds.) Theory and Applications of Ontology: Computer Applications, pp. 297–345. Springer, Netherlands (2010)Google Scholar
  26. 26.
    Neumuth, T., Jannin, P., Strauß, G., Meixensberger, J., Burgert, O.: Validation of knowledge acquisition for surgical process models. Journal of the American Medical Informatics Association 16, 72–80 (2009)CrossRefGoogle Scholar
  27. 27.
    Haidegger, T., Barreto, M., Gonçalves, P., Habib, M.K., Ragavan, V., Li, H., Vaccarella, A., Perrone, R., Prestes, E.: Applied ontologies and standards for service robots. Robotics and Autonomous Systems 61(11), 1215–1223 (2013)CrossRefGoogle Scholar
  28. 28.
    Dhouib, S., Du Lac, N., Farges, J.L., Gerard, S., Hemaissia-Jeannin, M., Lahera-Perez, J., Millet, S., Patin, B., Stinckwich, S.: Control architecture concepts and properties of an ontology devoted to exchanges in mobile robotics. In: 6th National Conference on Control Architectures of Robots, Grenoble, France, INRIA Grenoble Rhône-Alpes, 24 p., May 2011Google Scholar
  29. 29.
    Balakirsky, S.: Ontology based action planning and verification for agile manufacturing. Robotics and Computer-Integrated Manufacturing 33, 21–28 (2015). Special Issue on Knowledge Driven Robotics and ManufacturingGoogle Scholar
  30. 30.
    Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., et al.: Bioportal: Ontologies and integrated data resources at the click of a mouse. Nucleic Acids Research 37(s2), 170–173 (2009)CrossRefGoogle Scholar
  31. 31.
    Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., et al.: The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration. National Biotechnology 37, 1251–1255 (2007)CrossRefGoogle Scholar
  32. 32.
    Tenorth, M., Beetz, M.: Knowrob–knowledge processing for autonomous personal robots. In: Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pp. 4261–4266 (2009)Google Scholar
  33. 33.
    Tenorth, M., Beetz, M.: KnowRob - A Knowledge Processing Infrastructure for Cognition-enabled Robots. International Journal of Robotics Research (IJRR) 32(5), 566–590 (2013)CrossRefGoogle Scholar
  34. 34.
    Gonçalves, P., Torres, P., Santos, F., António, R., Catarino, N., Martins, J.: A vision system for robotic ultrasound guided orthopaedic surgery. Journal of Intelligent & Robotic Systems, 1–13 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of TechnologyPolytechnic Institute of Castelo BrancoCastelo BrancoPortugal
  2. 2.IDMEC / LAETA, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations