Autonomous Seabed Inspection for Environmental Monitoring

  • Juan David HernándezEmail author
  • Klemen Istenic
  • Nuno Gracias
  • Rafael García
  • Pere Ridao
  • Marc Carreras
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 418)


We present an approach for navigating in unknown environments, while gathering information for inspecting underwater structures using an autonomous underwater vehicle (AUV). To accomplish this, we first use our framework for mapping and planning collision-free paths online, which endows an AUV with the capability to autonomously acquire optical data in close proximity. With that information, we then propose a reconstruction framework to create a 3-dimensional (3D) geo-referenced photo-mosaic of the inspected area. These 3D mosaics are also of particular interest to other fields of study in marine sciences, since they can serve as base maps for environmental monitoring, thus allowing change detection of biological communities and their environment in the temporal scale. Finally, we evaluate our frameworks, independently, using the SPARUS-II, a torpedo-shaped AUV, conducting missions in real-world scenarios. We also assess our approach in a virtual environment that emulates a natural underwater milieu that requires the aforementioned capabilities.


Path planning Mapping Photo-mosaics Online computation constraints Monitoring Underwater environments AUV 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dunbabin, M., Marques, L.: Robots for Environmental Monitoring: Significant Advancements and Applications. IEEE Robot. Autom. Mag. 19, 24–39 (2012)CrossRefGoogle Scholar
  2. 2.
    Bingham, B., Foley, B., Singh, H., et al.: Robotic tools for deep water archaeology: Surveying an ancient shipwreck with an autonomous underwater vehicle. J. Field Robot. 27, 702–717 (2010)CrossRefGoogle Scholar
  3. 3.
    Galceran, E., Campos, R., Palomeras, N., et al.: Coverage Path Planning with Real-time Replanning and Surface Reconstruction for Inspection of Three-dimensional Underwater Structures using Autonomous Underwater Vehicles. J. Field Robot. (2014)Google Scholar
  4. 4.
    Hernández, J.D., Vidal, E., Vallicrosa, G., Galceran, E., et al.: Online path planning for autonomous underwater vehicles in unknown environments. In: IEEE Int. Conf. Robot. (ICRA), Seattle, pp. 1152–1157 (2015)Google Scholar
  5. 5.
    Hernández, J.D., Vallicrosa, G., Vidal, E., et al.: On-line 3D path planning for close-proximity surveying with AUVs. In: IFAC NGCUV, Girona (2015)Google Scholar
  6. 6.
    Hornung, A., Wurm, K.M., Bennewitz, M., et al.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34, 189–206 (2013)CrossRefGoogle Scholar
  7. 7.
    Karaman, S., Frazzoli, E.: Sampling-based Algorithms for Optimal Motion Planning. Int. J. Robot. Res. 30, 846–894 (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Garcia, R., Nicosevici, T., Cufí, X.: On the way to solve lighting problems in underwater imaging. In: MTS/IEEE OCEANS, vol. 2, pp. 1018–1024 (2002)Google Scholar
  9. 9.
    Pramunendar, R.A., Shidik, G.F., Supriyanto, C., et al.: Auto level color correction for underwater image matching optimization. Jurnal Informatika (2014)Google Scholar
  10. 10.
    Iqbal, K., Abdul Salam, R., Osman, M., et al.: Underwater Image Enhancement Using An Integrated Colour Model. IAENG Int. J. Comp. Sci. 32, 239–244 (2007)Google Scholar
  11. 11.
    Wu, C.: Towards linear-time incremental structure from motion. In: 2013 International Conference on 3D Vision-3DV, pp. 127–134 (2013)Google Scholar
  12. 12.
    Wu, C., Agarwal, S., Curless, B., et al.: Multicore bundle adjustment. In: IEEE Conf. Comp. Vis. Patt. Recog. (CVPR), pp. 3057–3064 (2011)Google Scholar
  13. 13.
    Bouguet, J.-Y.: Camera Calibration Toolbox for MatlabGoogle Scholar
  14. 14.
    Wu, C.: Critical configurations for radial distortion self-calibration. In: IEEE Conf. Comp. Vis. Patt. Recog. (CVPR), pp. 25–32 (2014)Google Scholar
  15. 15.
    Goesele, M., Snavely, N., Curless, B., et al.: Multi-view stereo for community photo collections. In: IEEE Int. Conf. Computer. Vision. (ICCV) (2007)Google Scholar
  16. 16.
    Fuhrmann, A., Goesele, M.: Floating scale surface reconstruction. ACM Transactions on Graphics (TOG) 33, 46 (2014)CrossRefGoogle Scholar
  17. 17.
    Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Transactions on Graphics (TOG) 32, 29 (2013)CrossRefzbMATHGoogle Scholar
  18. 18.
    Campos, R., Garcia, R., Nicosevici, T.: Surface reconstruction methods for the recovery of 3D models from underwater interest areas. In: IEEE OCEANS (2011)Google Scholar
  19. 19.
    Waechter, M., Moehrle, N., Goesele, M.: Let there be color! large-scale texturing of 3D reconstructions. In: Computer Vision–ECCV, pp. 836–850 (2014)Google Scholar
  20. 20.
    Palomeras, N., El-Fakdi, A., Carreras, M., et al.: COLA2: A Control Architecture for AUVs. IEEE Journal of Oceanic Engineering 37, 695–716 (2012)CrossRefGoogle Scholar
  21. 21.
    Prats, M., Perez, J., Fernandez, J.J., et al.: An open source tool for simulation and supervision of underwater intervention missions. In: IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), pp. 2577–2582 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Juan David Hernández
    • 1
    Email author
  • Klemen Istenic
    • 1
  • Nuno Gracias
    • 1
  • Rafael García
    • 1
  • Pere Ridao
    • 1
  • Marc Carreras
    • 1
  1. 1.Underwater Vision and Robotics Research Center (CIRS), Computer Vision and Robotics Institute (VICOROB)University of GironaGironaSpain

Personalised recommendations