Advertisement

Design and Development of a Pneumatic Robot for Neurorehabilitation Therapies

  • Jorge A. Díez
  • Francisco J. Badesa
  • Luis D. Lledó
  • José M. Sabater
  • Nicolás García-Aracil
  • Isabel Beltrán
  • Ángela Bernabeu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 418)

Abstract

This paper presents a new robotic system for upper limb rehabilitation. It is designed to assist the upper limb in therapies for both sitting and supine position, helping patients to carry out the required movements when they could not perform them. In the first part of the paper, the mechanical design and the development of the first prototype is exposed in detail. In the second part, new control strategy that modify the behavior of the rehabilitation robot according to different potential and force fields has been presented. Then, some experimental results of the performance of the implemented control with healthy subjects are reported.

Keywords

Rehabilitation robotics Robot design Mechanical design Control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Nations: World population prospects. The 2010 revision (2011)Google Scholar
  2. 2.
    Prange, G., Jannink, M., Groothuis-Oudshoorn, C., Hermens, H., Ijzerman, M.: Systematic review of the effect of robotaided therapy on recovery of the hemiparetic arm after stroke. J. Rehab. Res. Develop. 43(2), 171–184 (2006)CrossRefGoogle Scholar
  3. 3.
    Schaechter, J.D.: Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog. Neurobiol. 73, 61–72 (2004)CrossRefGoogle Scholar
  4. 4.
    Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T.: Robot-aided neurorehabilitation. IEEE Trans. Rehabil. Eng. 6(1), 75–87 (1998)CrossRefGoogle Scholar
  5. 5.
    Lum, P.S., Burgar, C.G., Van der Loos, M., Shor, P.C., Majmundar, M., Yap, R.: The MIME robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute stroke. In: 9th International Conference on Rehabilitation Robotics ICORR 2005, pp. 511–514 (2005)Google Scholar
  6. 6.
    Nef, T., Guidali, M., Klamroth, V., Riener, R.: ARMin-Exoskeleton for Stroke Rehabilitation. IFMBE Proceedings 25(9), 127–130 (2009)CrossRefGoogle Scholar
  7. 7.
    Loureiro, R., Amirabdollahian, F., Topping, M., Driessen, B., Harwin, W.: Upper Limb Robot Mediated Stroke Therapy:GENTLE/s Approach. Auton. Robots 15(1), 35–51 (2003)CrossRefGoogle Scholar
  8. 8.
    Jackson, A., Holt, R., Culmer, R., Makower, S., Levesley, M., Richardson, R., Cozens, J., Williams, M., Bhakta, B.: Dual robot system for upper limb rehabilitation after stroke: the design process. Journal of Mechanical Engineering Science- Proceedings of the Institution of Mechanical Engineers, Part C 221, 845–857 (2007)CrossRefGoogle Scholar
  9. 9.
    Balasubramanian, S., Ruihua, W., Perez, M., Shepard, B., Koeneman, E., Koeneman, J., Jiping, H.: Rupert: an exoskeleton robot for assisting rehabilitation of arm functions. In: Virtual Rehabilitation, pp. 163–167 (2008)Google Scholar
  10. 10.
    Masiero, S., Armani, M., Rosati, G.: Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial. J. Rehabil. Res. Dev. 48(4), 355–366 (2011)CrossRefGoogle Scholar
  11. 11.
    Morales, R., Badesa, F.J., Garca-Aracil, N., Sabater, J.M., Prez-Vidal, C.: Pneumatic robotic systems for upper limb rehabilitation. Medical & Biological Engineering & Computing 49(10), 1145–1156 (2011). ISSN 0140-0118CrossRefGoogle Scholar
  12. 12.
    Nordin, N., Xie, S.Q., Wnsche, B.: Assessment of movement quality in robot- assisted upper limb rehabilitation after stroke: a review. J. Neuroeng. Rehabil. 12(11), 137 (2014). doi: 10.1186/1743-0003-11-137 CrossRefGoogle Scholar
  13. 13.
    Masiero, S., Celia, A., Rosati, G., Armani, M.: Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch. Phys. Med. Rehabil. 88, 142–149 (2007). doi: 10.1016/j.apmr.2006.10.032. [PMID: 17270510]CrossRefGoogle Scholar
  14. 14.
    Badesa, F.J., Llinares, A., Morales, R., Garcia-Aracil, N., Sabater, J.M., Perez-Vidal, C.: Pneumatic planar rehabilitation robot for post-stroke patients. Journal of Biomedical Engineering: Applications, Basis and Communications 26(02), 1450025 (2014)Google Scholar
  15. 15.
    Marchal-Crespo, L., Reinkensmeyer, D.J.: Review of control strategies for robotic movement training after neurologic injury. Journal of NeuroEngineering and Rehabilitation 6, 20 (2009). doi: 10.1186/1743-0003-6-20 CrossRefGoogle Scholar
  16. 16.
    Banala, S.K., Agrawal, S.K., Scholz, J.O.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: IEEE 10th International Conference on Rehabilitation Robotics (ICORR), pp. 401–407 (2007)Google Scholar
  17. 17.
    Banala, S.K., Agrawal, S.K., Kim, S.H., Scholz, J.O.: Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Transactions on Mechatronics 99, 1–10 (2010)Google Scholar
  18. 18.
    Mihelj, M., Nef, T., Riener, R.: A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots. Adv. Robotics 21, 843–867 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jorge A. Díez
    • 1
  • Francisco J. Badesa
    • 1
  • Luis D. Lledó
    • 1
  • José M. Sabater
    • 1
  • Nicolás García-Aracil
    • 1
  • Isabel Beltrán
    • 1
  • Ángela Bernabeu
    • 1
  1. 1.Biomedical Neuroengineering Research GroupMiguel Hernandez UniversityElcheSpain

Personalised recommendations