Advertisement

Control of the E2REBOT Platform for Upper Limb Rehabilitation in Patients with Neuromotor Impairment

  • Juan-Carlos Fraile
  • Javier Pérez-Turiel
  • Pablo Viñas
  • Rubén Alonso
  • Alejandro Cuadrado
  • Laureano Ayuso
  • Francisco García-Bravo
  • Felix Nieto
  • Laurentiu Mihai
  • Manuel Franco-Martin
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 418)

Abstract

In this paper, the most significant aspects of the new robotic platform E2REBOT, for active assistance in rehabilitation work of the upper limbs for people with neuromotor impairment, are presented. Special emphasis is made on the characteristics of their control architecture, designed based on a three level model, one of which implements a haptic impedance controller, developed according to the “assist as needed” paradigm, looking to dynamically adjust the level of assistance to the current situation of the patient, in order to improve the results of the therapy. The two modes of therapy that supports the platform are described, highlighting the behavior of the control system in each case and describing the criteria used to adapt the behavior of the robot. Finally, we describe the ability of the system for the automatic recording of kinematic and dynamic parameters during the execution of therapies, and the availability of a management environment for exploiting these data, as a tool for supporting the rehabilitation tasks.

Keywords

Robotics Rehabilitation Neuromotor impairment “assist as needed” Haptic controller Impedance control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Warraich, Z., Kleim, J.A.: Neural plasticity: the biological substrate for neurorehabilitation. PM&R 2(12), S208–S219 (2010)CrossRefGoogle Scholar
  2. 2.
    Scott, S.H., Dukelow, S.P.: Potential of robots as next-generation technology for clinical assessment of neurological disorders and upper-limb therapy. J. Rehabil. Res. Dev. 48(4), 335–353 (2011)CrossRefGoogle Scholar
  3. 3.
    Bartenbach, V., Sander, C., Pöschl, M., Wilging, K., Nelius, T., Doll, F., Burger, W., Stockinger, C., Focke, A., Stein, T.: The BioMotionBot: A robotic device for applications in human motor learning and rehabilitation. Journal of Neuroscience Methods 213(2), 282–297 (2013)CrossRefGoogle Scholar
  4. 4.
    Blank, A.A., French, J.A., Pehlivan, A.U., O’Malley, M.K.: Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy. Current Physical Medicine and Rehabilitation Reports 2(3), 184–195 (2014)CrossRefGoogle Scholar
  5. 5.
    Hesse, S., Heß, A., Werner, C., Kabbert, N., Buschfort, R.: Effect on arm function and cost of robot-assisted group therapy in subacute patients with stroke and a moderately to severely affected arm: a randomized controlled trial. Clinical Rehabilitation 28(7), 637–647 (2014)CrossRefGoogle Scholar
  6. 6.
    Hogan, N., Krebs, H.I.: Interactive robots for neurorehabilitation. Restorative Neurology and Neuroscience 22, 349–358 (2004)Google Scholar
  7. 7.
    Liao, W.W., Wu, C.Y., Hsieh, Y.W., Lin, K.C., Chang, W.Y.: Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clinical Rehabilitation 26(2), 111–120 (2012)CrossRefGoogle Scholar
  8. 8.
    Timmermans, A.A., Lemmens, R.J., Monfrance, M., Geers, R.P., Bakx, W., Smeets, R.J., Seelen, H.A.: Effects of task-oriented robot training on arm function, activity, and quality of life in chronic stroke patients: a randomized controlled trial. J. Neuroeng. Rehabil. 11(45), 0003–11 (2014)Google Scholar
  9. 9.
    Guerrero, C.R., Marinero, J.C.F., Turiel, J.P., Muñoz, V.: Using “human state aware” robots to enhance physical human–robot interaction in a cooperative scenario. Computer Methods and Programs in Biomedicine 112(2), 250–259 (2013)CrossRefGoogle Scholar
  10. 10.
    Fraile Marinero, J.C., Pérez Turiel, J.; Rodríguez Guerrero, C., Oliva, P.: Evolución de la plataforma robotizada de neuro-rehabilitación physiobot. In: VII Congreso Iberoamericano de Tecnologías de Apoyo a la Discapacidad (Iberdiscap 2013), Santo Domingo (República Dominicana), pp. 287–292 (2013)Google Scholar
  11. 11.
    Mehrholz, J., Haedrich, A., Platz, T., Kugler, J., Pohl, M.: Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. The Cochrane Library (2012)Google Scholar
  12. 12.
    Sivan, M., O’Connor, R.J., Makower, S., Levesley, M., Bhakta, B.: Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. Journal of Rehabilitation Medicine 43(3), 181–189 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Juan-Carlos Fraile
    • 1
  • Javier Pérez-Turiel
    • 1
  • Pablo Viñas
    • 2
  • Rubén Alonso
    • 2
  • Alejandro Cuadrado
    • 2
  • Laureano Ayuso
    • 3
  • Francisco García-Bravo
    • 3
  • Felix Nieto
    • 4
  • Laurentiu Mihai
    • 4
  • Manuel Franco-Martin
    • 5
  1. 1.ITAP – Instituto de Tecnologías Avanzadas de la ProducciónUniv. de ValladolidValladolidSpain
  2. 2.Centro Tecnológico Fundación CARTIFValladolidSpain
  3. 3.Aplifisa S.L.SalamancaSpain
  4. 4.IDECALBarcelonaSpain
  5. 5.Instituto Ibérico de Investigación en PsicocienciasZamoraSpain

Personalised recommendations