Advertisement

A Data Mining Approach to Predict Falls in Humanoid Robot Locomotion

  • João André
  • Brígida Mónica Faria
  • Cristina Santos
  • Luís Paulo Reis
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 418)

Abstract

The inclusion of perceptual information in the operation of a dynamic robot (interacting with its environment) can provide valuable insight about its environment and increase robustness of its behaviour. In this regard, the concept of Associative Skill Memories (ASMs) has provided a great contributions regarding an effective and practical use of sensor data, under a simple and intuitive framework [2, 13]. Inspired by [2], this paper presents a data mining solution to the fall prediction problem in humanoid biped robotic locomotion. Sensor data from a large number of simulations was recorded and four data mining algorithms were applied with the aim of creating a classifier that properly identifies failure conditions. Using Support Vector Machines, on top of sensor data from a large number of simulation trials, it was possible to build an accurate and reliable offline fall predictor, achieving accuracy, sensitivity and specificity values up to 95.6%, 96.3% and 94.5%, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    André, J., Santos, C., Costa, L.: Path integral learning of multidimensional movement trajectories. In: Proceedings of the International Conference of Numerical Analysis and Applied Mathematics 2013 (ICNAAM 2013), Rhodes, Greece (2013)Google Scholar
  2. 2.
    André, J., Santos, C., Costa, L.: Skill memory in biped locomotion. Journal of Intelligent & Robotic Systems, 1–19 (2015). doi: 10.1007/s10846-015-0197-z, http://dx.doi.org/10.1007/s10846-015-0197-z
  3. 3.
    André, J., Teixeira, C., Santos, C., Costa, L.: Adapting biped locomotion to sloped environments. Journal of Intelligent & Robotic Systems, 1–16 (2015). doi: 10.1007/s10846-015-0196-0, http://dx.doi.org/10.1007/s10846-015-0196-0
  4. 4.
    Aoi, S., Ogihara, N., Funato, T., Sugimoto, Y., Tsuchiya, K.: Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically-based model of the spinal pattern generator. Biological Cybernetics 102(5), 373–387 (2010)CrossRefGoogle Scholar
  5. 5.
    Christensen, A.L.: Fault Detection in Autonomous Robots. Phd, Université Libre de Bruxelles (2008)Google Scholar
  6. 6.
    Dev Anand, M., Selvaraj, T., Kumanan, S.: Fault detection and fault tolerance methods for industrial robot manipulators based on hybrid intelligent approach. Advances in Production Engineering and Management 7(4), 225–236 (2012)CrossRefGoogle Scholar
  7. 7.
    Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. doi:10.1.1.103.7226Google Scholar
  8. 8.
    Matos, V., Santos, C.P.: Central pattern generators with phase regulation for the control of humanoid locomotion. In: IEEE-RAS International Conference on Humanoid Robots, Osaka, Japan (2012)Google Scholar
  9. 9.
    Owaki, D., Morikawa, L., Ishiguro, A.: Listen to body’s message: quadruped robot that fully exploits physical interaction between legs. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1950–1955. IEEE, Vilamoura (2012)Google Scholar
  10. 10.
    Tan, P.N., Steinbach, M., Kumar, V.: Introduction to data mining. In: Pearson Education, Inc. (2006)Google Scholar
  11. 11.
    Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.: Skill learning and task outcome prediction for manipulation. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3828–3834 (2011)Google Scholar
  12. 12.
    Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., Schaal, S.: From dynamic movement primitives to associative skill memories. Robotics and Autonomous Systems 61(4), 351–361 (2013)CrossRefGoogle Scholar
  13. 13.
    Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.: Towards associative skill memories. In: 12th IEEE-RAS International Conference on Humanoid Robotics (Humanoids), Osaka, Japan, pp. 309–315 (2012)Google Scholar
  14. 14.
    Plagemann, C., Stachniss, C., Burgard, W.: Efficient failure detection for mobile robots using mixed-abstraction particle filters. In: European Robotics Symposium 2006, pp. 93–107 (2006)Google Scholar
  15. 15.
    Rapidminer: Predictive analytics reimagined. http://support.robotis.com/en/product/darwin-op.htm (accessed July 2015)
  16. 16.
    Santos, C.P., Matos, V.: CPG modulation for navigation and omnidirectional quadruped locomotion. Robotics and Autonomous Systems 60(6), 912–927 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • João André
    • 1
    • 4
  • Brígida Mónica Faria
    • 2
    • 5
    • 6
  • Cristina Santos
    • 1
    • 4
  • Luís Paulo Reis
    • 2
    • 3
    • 4
  1. 1.DEI/EEUM - Dep. de Electrónica IndustrialEsc. de Engenharia da Universidade do MinhoGuimarãesPortugal
  2. 2.ESTSP/IPP – Esc. Sup. de Tecnologia da Saúde do PortoInstituto Politécnico do PortoPortoPortugal
  3. 3.DSI/EEUM - Dep. de Sistemas de InformaçãoEsc. de Engenharia da Universidade do MinhoGuimarãesPortugal
  4. 4.Centro ALGORITMIGuimarãesPortugal
  5. 5.LIACC – Laboratório de Inteligência Artificial e Ciência de ComputadoresPortoPortugal
  6. 6.INESC TEC – INESC Tecnologia e CiênciaPortoPortugal

Personalised recommendations