Visual Inspection of Vessels by Means of a Micro-Aerial Vehicle: An Artificial Neural Network Approach for Corrosion Detection

  • Alberto OrtizEmail author
  • Francisco Bonnin-Pascual
  • Emilio Garcia-Fidalgo
  • Joan P. Company
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 418)


Periodic visual inspection of the different surfaces of a vessel hull is typically performed by trained surveyors at great cost, both in time and in economical terms. Assisting them during the inspection process by means of mechanisms capable of automatic or semi-automatic defect detection would certainly decrease the inspection cost. This paper describes a defect detection approach comprising: (1) a Micro-Aerial Vehicle (MAV) which is used to collect images from the surfaces under inspection, particularly focusing on remote areas where the surveyor has no visual access; and (2) a coating breakdown/corrosion detector based on a 3-layer feed-forward artificial neural network. The success of the classification process depends not only on the defect detector but also on a number of assistance functions that are provided by the control architecture of the aerial platform, whose aim is to improve picture quality. Both aspects are described along the different sections of the paper, as well as the classification performance attained.


Corrosion detection MAV Artificial neural network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amano, T.: Correlation based image defect detection. In: Proc. ICPR, pp. 163–166 (2006)Google Scholar
  2. 2.
    Arkin, R.C.: Behavior-based Robotics. MIT press (1998)Google Scholar
  3. 3.
    Bonnin-Pascual, F., Ortiz, A.: Combination of weak classifiers for metallic corrosion detection and guided crack location. In: IEEE Intl. Conf. Emerging Tech. & Factory Automat. (2010)Google Scholar
  4. 4.
    Bonnin-pascual, F., Ortiz, A.: A probabilistic approach for defect detection based on saliency mechanisms. In: IEEE Intl. Conf. Emerging Tech. & Factory Automat. (2014)Google Scholar
  5. 5.
    Bonnin-Pascual, F., Ortiz, A.: Corrosion Detection for Automated Visual Inspection. In: Aliofkhazraei, D.M. (ed.) Developments in Corrosion Protection, pp. 619–632. InTech (2014)Google Scholar
  6. 6.
    Boukouvalas, C., Kittler, J., Marik, R., Mirmehdi, M., Petrou, M.: Ceramic tile inspection for colour and structural defects. Technical Report CS-EXT-1995-052 (1995), also: Proc. AMPT, pp. 390–399 (1995)Google Scholar
  7. 7.
    Chang, C.-L., Chang, H.-H., Hsu, C.P.: An intelligent defect inspection technique for color filter. In: Pro. IEEE Intl. Conf. Mechatronics, pp. 933–936 (2005)Google Scholar
  8. 8.
    Castilho, H., Pinto, J., Limas, A.: An automated defect detection based on optimized thresholding. In: Proc. Intl. Conf. Image Analysis & Recognition, pp. 790–801 (2006)Google Scholar
  9. 9.
    Cheng, G., Zelinsky, A.: Supervised Autonomy: A Framework for Human-Robot Systems Development. Auton. Robot. 10, 251–266 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley (2001)Google Scholar
  11. 11.
    Eich, M., Bonnin-Pascual, F., Garcia-Fidalgo, E., Ortiz, A., Bruzzone, G., Koveos, Y., Kirchner, F.: A Robot Application to Marine Vessel Inspection. J. Field Robot. 31(2), 319–341 (2014)CrossRefGoogle Scholar
  12. 12.
    Fujita, Y., Mitani, Y., Hamamoto, Y.: A method for crack detection on a concrete structure. In: Proc. ICPR, pp. III: 901–904 (2006)Google Scholar
  13. 13.
    Gurdan, D., Stumpf, J., Achtelik, M., Doth, K.M., Hirzinger, G., Rus, D.: Energy-efficient Autonomous Four-rotor Flying Robot Controlled at 1 kHz. In: Proc. IEEE ICRA, pp. 361–366 (2007)Google Scholar
  14. 14.
    Honegger, D., Meier, L., Tanskanen, P., Pollefeys, M.: An open source and open hardware embedded metric optical flow CMOS camera for indoor and outdoor applications. In: Proc. IEEE ICRA, pp. 1736–1741 (2013)Google Scholar
  15. 15.
    Hongbin, J., Murphey, Y., Jinajun, S., Tzyy-Shuh, C.: An intelligent real-time vision system for surface defect detection. In: Proc. ICPR, pp. III: 239–242 (2004)Google Scholar
  16. 16.
    Jahanshahi, M., Masri, S.: Effect of color space, color channels, and sub-image block size on the performance of wavelet-based texture analysis algorithms: An application to corrosion detection on steel structures. In: ASCE Intl. Workshop on Computing in Civil Eng. (2013)Google Scholar
  17. 17.
    Ji, G., Zhu, Y., Zhang, Y.: The corroded defect rating system of coating material based on computer vision. In: Trans. Edutainment VIII, LNCS, vol. 7220, pp. 210–220. Springer (2012)Google Scholar
  18. 18.
    Jiang, B.C., Wang, C.C., Chen, P.L.: Logistic regression tree applied to classify PCB golden finger defects. Intl. Jour. Advanced Manufacturing Technology 24(7–8), 496–502 (2004)CrossRefGoogle Scholar
  19. 19.
    Kumar, A., Shen, H.: Texture inspection for defects using neural networks and support vector machines. In: Proc. IEEE ICIP. vol. III, pp.353–356 (2002)Google Scholar
  20. 20.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  21. 21.
    Oullette, R., Browne, M., Hirasawa, K.: Genetic algorithm optimization of a convolutional neural network for autonomous crack detection. In: Proc. IEEE CEC, pp. I: 516–521 (2004)Google Scholar
  22. 22.
    Ruffo, M., Castro, M.D., Molinari, L., Losito, R., Masi, A., Kovermann, J., Rodrigues, L.: New Infrared Time-of-flight Measurement Sensor for Robotic Platforms. In: IMEKO TC4 Int. Symposium and Int. Workshop on ADC Modelling and Testing, pp. 13–18 (2014)Google Scholar
  23. 23.
    Siegel, M., Gunatilake, P., Podnar, G.: Robotic assistants for aircraft inspectors. IEEE Instrumentation & Measurement Magazine 1(1), 16–30 (1998)CrossRefGoogle Scholar
  24. 24.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press (2006)Google Scholar
  25. 25.
    Xu, S., Weng, Y.: A new approach to estimate fractal dimensions of corrosion images. Pattern Recogn. Lett. 27(16), 1942–1947 (2006)CrossRefGoogle Scholar
  26. 26.
    Yamaguchi, T., Hashimoto, S.: Fast Crack Detection Method for Large-size Concrete Surface Images Using Percolation-based Image Processing. Mach. Vision Appl. 21(5), 797–809 (2010)CrossRefGoogle Scholar
  27. 27.
    Zaidan, B.B., Zaidan, A.A., Alanazi, H.O., Alnaqeib, R.: Towards corrosion detection system. Intl. Jour. Computer Science Issues 7(1), 33–35 (2010)Google Scholar
  28. 28.
    Zhang, X., Liang, R., Ding, Y., Chen, J., Duan, D., Zong, G.: The system of copper strips surface defects inspection based on intelligent fusion. In: Proc. IEEE Intl. Conf. Automation and Logistics, pp. 476–480 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alberto Ortiz
    • 1
    Email author
  • Francisco Bonnin-Pascual
    • 1
  • Emilio Garcia-Fidalgo
    • 1
  • Joan P. Company
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of Balearic IslandsPalmaSpain

Personalised recommendations