Reconfiguration of a Climbing Robot in an All-Terrain Hexapod Robot

  • Lisbeth Mena
  • Héctor MontesEmail author
  • Roemi Fernández
  • Javier Sarria
  • Manuel Armada
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 418)


This work presents the reconfiguration from a previous climbing robot to an all-terrain robot for applications in outdoor environments. The original robot is a six-legged climbing robot for high payloads. This robot has used special electromagnetic feet in order to support itself on vertical ferromagnetic walls to carry out specific tasks. The reconfigured all-terrain hexapod robot will be able to perform different applications on the ground, for example, as inspection platform for humanitarian demining tasks. In this case, the reconfigured hexapod robot will load a scanning manipulator arm with a specific metal detector as end-effector. With the implementation of the scanning manipulator on the hexapod robot, several tasks about search and localisation of antipersonnel mines would be carried out. The robot legs have a SCARA configuration, which allows low energy consumption when the robot performs trajectories on a quasi-flat terrain.


Hexapod robot Walking and climbing robot SCARA configuration Antipersonnel landmines Control architecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bekey, G.A.: Autonomous Robots: From Biological Inspiration to Implementation and Control. MIT Press, USA (2005)Google Scholar
  2. 2.
    Gonzalez de Santos, P., Garcia, E., Estremera, J.: Quadrupedal locomotion: an introduction to the control of four-legged robots. Springer, Germany (2006)Google Scholar
  3. 3.
    Tenreiro, J.A., Silva, M.: An overview of legged robots. In: Proc. International Symposium on Mathematical Methods in Engineering, Ankara, Turkey (2006)Google Scholar
  4. 4.
    Heverly, M., Matthews, J., Frost, M., Quin, C.: Development of the Tri-ATHLETE lunar vehicle prototype. In: Proceedings of the 40th Aerospace Mechanisms Symposium, NASA, May 12, 2010Google Scholar
  5. 5.
    Saunders, A., Goldman, D.I., Full, R.J., Buehler, M.: The RiSE Climbing Robot: Body and Leg Design. Unmanned Systems Technology VIII, Proc. of SPIE 6230(17), 1–13 (2006)Google Scholar
  6. 6.
    Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: The BigDog team: BigDog, the rough-terrain quaduped robot. In: Proc. The IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles, IFAC NGCUV 2008, Killaloe, Ireland, April 8–10, 2008Google Scholar
  7. 7.
    Boston Dynamics: LittleDog Robot 1.0 User Guide. Cambridge, MA, p. 64 (2006)Google Scholar
  8. 8.
    Mandelbaum, R.: Legged Squad Support System, Industry Day. DARPA (2008)Google Scholar
  9. 9.
    Massachusetts Institute of Technology: Run, cheetah, run: New algorithm enables cheetah robot to run and jump, untethered, across grass. ScienceDaily, September 15, 2014.
  10. 10.
    Gonzalez de Santos, P., Armada, M., García, E., Akinfiev, T., No, J., Prieto, M., Nabulsi, S., Cobano, J.A., Ponticelli, R., Sarria, J., Reviejo, J., Salinas, C. y Ramos, A.: Desarrollo de robots caminantes y escaladores en el IAI-CSIC, Departamento de Control Automático Instituto de Automática Industrial - CSIC, Congreso Español de Informatica – CEDI (2007)Google Scholar
  11. 11.
    Gonzalez de Santos, P., and Jimenez, M.A.: Generation of Discontinuous Gaits for Quadruped Walking Machines. Journal of Robotic Systems 12(9), 599–611 (1995)Google Scholar
  12. 12.
    Gonzalez de Santos, P., Armada, M.A., Jimenez, M.A.: Ship building with ROWER. IEEE Robotics and Automation Magazine 7(4), 35–43 (2000)Google Scholar
  13. 13.
    Grieco, J.C., Prieto, M., Armada, M., Gonzalez de Santos, P.: A six-legged climbing robot for high payloads. In: Proc. 1988 IEEE International Conf. on Control Applications, Trieste, Italy, pp. 446–450 (1998)Google Scholar
  14. 14.
    de Santos, Gonzalez: P., Garcia, E., Estremera, J. and Armada, M.A.: DYLEMA: Using walking robots for landmine detection and location. The International Journal of System Science 36(9), 545–558 (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Montes, H.: Análisis, diseño y evaluación de estrategias de control de fuerza en robots caminantes. Ph.D. Thesis, Universidad Complutense de Madrid (2005)Google Scholar
  16. 16.
    Akinfiev, T., Armada, M., Montes, H.: Vertical movement of resonance hopping robot with electric drive and simple control system. In: Proc. of IEEE, 11th Mediterranean Conference on Control and Automation MED 2003, Rhodes, Greece (2003)Google Scholar
  17. 17.
    Armada, M., Caballero, R., Akinfiev, T., Montes, H., Manzano, C., Pedraza, L., Ros, S., González de Santos, P.: Design of SILO2 humanoid robot. In: Proc. of The Third IARP International Workshop on Humanoid and Human Friendly Robotics, Tsukuba, Ibaraki, Japan, pp. 37–42 (2002)Google Scholar
  18. 18.
    Nabulsi, S., Montes, H., Armada, M.: ROBOCLIMBER: control system architecture. In: Proc. Int. Conf. of Climbing and Walking Robots, CLAWAR 2004, Madrid, Spain, pp. 943–952 (2004)Google Scholar
  19. 19.
    Nabulsi, S., Sarria, J., Montes, H., Armada, M.: High Resolution Indirect Feet-Ground Interactions Measurement for Hydraulic Legged Robots. IEEE Transactions on Instrumentation and Measurement 58(10), 3396–3404 (2009)CrossRefGoogle Scholar
  20. 20.
    Grieco, J.C.: Robots Escaladores. Condiciones de Diseño, estabilidad y Estrategias de Control. Ph.D. Thesis, Universidad de Valladolid (1997)Google Scholar
  21. 21.
    Montes, H., Mena, L., Fernández, R., Sarria, J., González de Santos, P., Armada, M.: Hexapod robot for humanitarian demining. In: Proc. RISE 2015, 8th IARP Workshop on Robotics for Risky Environments [CD], January 28–29, 2015, Naval Academy, Lisbon, Portugal (2015)Google Scholar
  22. 22.
    Montes, H., Mena, L., Fernández, R., Sarria, J., Armada, M.: Inspection platform for applications in humanitarian demining. In: 18th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines. Assistive Robotics, September 6–9, 2015, HangZhou, China, pp. 446–453 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lisbeth Mena
    • 1
  • Héctor Montes
    • 2
    • 1
    Email author
  • Roemi Fernández
    • 1
  • Javier Sarria
    • 1
  • Manuel Armada
    • 1
  1. 1.Centro de Automática Y Robótica CSIC-UPMMadridSpain
  2. 2.Facultad de Ingeniería EléctricaUniversidad Tecnológica de PanamáPanama CityPanama

Personalised recommendations