Advertisement

Biped Walking Learning from Imitation Using Dynamic Movement Primitives

  • José Rosado
  • Filipe Silva
  • Vítor Santos
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 418)

Abstract

Exploring the full potential of humanoid robots requires their ability to learn, generalize and reproduce complex tasks that will be faced in dynamic environments. In recent years, significant attention has been devoted to recovering kinematic information from the human motion using a motion capture system. This paper demonstrates the use of a VICON system to capture human locomotion that is used to train a set of Dynamic Movement Primitives. These DMP can then be used to directly control a humanoid robot on the task space. The main objectives of this paper are: (1) to study the main characteristics of human natural locomotion and human “robot-like” locomotion; (2) to use the captured motion to train a DMP; (3) to use the DMP to directly control a humanoid robot in task space. Numerical simulations performed on V-REP demonstrate the effectiveness of the proposed solution.

Keywords

Biped locomotion Motion capture Movement primitives Nonlinear oscillators Inter-limb coordination Learning by demonstration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Billard, A., Callinon, S., Dillmann, R., Schaal, S.: Robot programming by demonstration. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics. Springer, New York (2008)Google Scholar
  2. 2.
    Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A Survey of Robot Learning from Demonstration. Robotics and Autonomous Systems 57(5), 469–483 (2009)CrossRefGoogle Scholar
  3. 3.
    Dasgupta, A., Nakamura, Y.: Making feasible walking motion of humanoid robots from human motion capture data. In: IEEE International Conference on Robotics and Automation, pp. 1044–1049 (1999)Google Scholar
  4. 4.
    Elgammal, A., Lee, C.-S.: Tracking People on a Torus. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(3), 520–538 (2009)CrossRefGoogle Scholar
  5. 5.
    Inamura, T., Toshima, I., Tanie, H., Nakamura, Y.: Embodied Symbol Emergence Based on Mimesis Theory. International Journal of Robotics Research 23(4–5), 363–377 (2004)CrossRefGoogle Scholar
  6. 6.
    Kulic, D., Takano, J.W., Nakamura, Y.: I”ncremental Learning, Clustering and Hierarchy Formation of Whole Body Motion Patterns using Adaptive Hidden Markov Chains. International Journal of Robotics Research 27(7), 761–784 (2008)CrossRefGoogle Scholar
  7. 7.
    Shon, A.P., Grochow, K., Hertzmann, A., Rao, R.P.: Learning Shared Latent Structure for Image Synthesis and Robotic Imitation. In: Weiss, Y., Schlkopf, B., Platt, J.C. (eds.) Advances in Neural Information Processing Systems. MIT Press, Cambridge (2005)Google Scholar
  8. 8.
    Rohmer, E., Singh, S., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1321–1326 (2013)Google Scholar
  9. 9.
    Argall, B., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robotics and Autonomous Systems 57(5), 469–483 (2009)CrossRefGoogle Scholar
  10. 10.
    Billard, A., Callinon, S., Dillmann, R., Schaal, S.: Robot programming by demonstration. In: Siciliano, B., Khatib, O. (eds.) Handbook of robotics. Springer, New York (2008)Google Scholar
  11. 11.
    Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learning by imitation. Philosophical Transaction of the Royal Society of London: Series B, Biological Sciences 358, 537–547 (2003)CrossRefGoogle Scholar
  12. 12.
    Breazeal, C., Scassellati, B.: Robots that imitate humans. Trends in Cognitive Science 6(11), 481–487 (2002)CrossRefGoogle Scholar
  13. 13.
    Kober, J., Peters, J.,: Policy search for motor primitives in robotics. Machine Learning (2010)Google Scholar
  14. 14.
    Ijspeert, A., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pp. 1398–1403 (2002)Google Scholar
  15. 15.
    Gams, A., Ijspeert, A.J., Schaal, S., Lenarcic, J.: On-line learning and modulation of periodic movements with nonlinear dynamical systems. Autonomous Robots 27(1), 3–23 (2009)CrossRefGoogle Scholar
  16. 16.
    Ijspeert, A., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Computation 25, 328–373 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and generalization of motor skills by learning from demonstration. In: Proceedings of the IEEE International Conference on Robotics and Automation (2009)Google Scholar
  18. 18.
    Bitzer, S., Havoutis, I., Vijayakumar, S.: Synthesising Novel Movements through Space Modulation of Scalable Control Policies. From Animals to Animats. Springer (2008)Google Scholar
  19. 19.
    Umberger, B.R.: Stance and Swing Phase Costs in Human Walking. Journal of the Royal Society Interface 7(50), 1329–1340 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer Science and Systems EngineeringCoimbra Institute of Engineering, IPCCoimbraPortugal
  2. 2.Institute of Electronics Engineering and Telematics of Aveiro, Department of Electronics, Telecommunications and Informatics,University of AveiroAveiroPortugal
  3. 3.Institute of Electronics Engineering and Telematics of Aveiro, Department of Mechanical EngineeringUniversity of AveiroAveiroPortugal

Personalised recommendations