Skip to main content

A UGV Approach to Measure the Ground Properties of Greenhouses

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 418))

Abstract

Greenhouse farming is based on the control of the environment of the crops and the supply of water and nutrients to the plants. These activities require the monitoring of the environmental variables at both global and local scale. This paper presents a ground robot platform for measuring the ground properties of the greenhouses. For this purpose, infrared temperature and soil moisture sensors are equipped into an unmanned ground vehicle (UGV). In addition, the navigation strategy is explained including the path planning and following approaches. Finally, all the systems are validated in a field experiment and maps of temperature and humidity are performed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine 40(8), 102–114 (2002)

    Article  Google Scholar 

  2. Antonio, P., Grimaccia, F., Mussetta, M.: Architecture and methods for innovative heterogeneous wireless sensor network applications. Remote Sensing 4(5), 1146–1161 (2012)

    Article  Google Scholar 

  3. Choset, H., Pignon, P.: Coverage path planning: the boustrophedon cellular decomposition. In: Field and Service Robotics, pp. 203–209. Springer (1998)

    Google Scholar 

  4. Correll, N., Arechiga, N., Bolger, A., Bollini, M., Charrow, B., Clayton, A., Dominguez, F., Donahue, K., Dyar, S., Johnson, L., et al.: Building a distributed robot garden. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 1509–1516. IEEE (2009)

    Google Scholar 

  5. Ecker, J.R.: The ethylene signal transduction pathway in plants. Science 268(5211), 667 (1995)

    Article  Google Scholar 

  6. García, M.A., Gutiérrez, S., López, H.C., Rivera, S., Ruiz, A.C.: Estado del arte de la tecnología de robots aplicada a invernaderos. Avances en Investigación Agropecuaria 11(3), 53–61 (2007)

    Google Scholar 

  7. van Henten, E.J.: Greenhouse climate management: an optimal control approach. Landbouwuniversiteit te Wageningen (1994)

    Google Scholar 

  8. Kirnak, H., Kaya, C., Tas, I., Higgs, D.: The influence of water deficit on vegetative growth, physiology, fruit yield and quality in eggplants. Bulg. J. Plant Physiol. 27(3–4), 34–46 (2001)

    Google Scholar 

  9. Langreo, A.: La agricultura mediterránea en el siglo xxi. Méditerraneo Económico 2, 101–123 (2002)

    Google Scholar 

  10. Lieberman, M., Baker, J.E., Sloger, M.: Influence of plant hormones on ethylene production in apple, tomato, and avocado slices during maturation and senescence. Plant Physiology 60(2), 214–217 (1977)

    Article  Google Scholar 

  11. Linker, R., Seginer, I.: Greenhouse temperature modeling: a comparison between sigmoid neural networks and hybrid models. Mathematics and Computers in Simulation 65(1), 19–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mandow, A., Gomez-de Gabriel, J.M., Martinez, J.L., Munoz, V.F., Ollero, A., García-Cerezo, A.: The autonomous mobile robot aurora for greenhouse operation. IEEE Robotics & Automation Magazine 3(4), 18–28 (1996)

    Article  Google Scholar 

  13. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office marathon: Robust navigation in an indoor office environment (2010)

    Google Scholar 

  14. Martínez, M., Blasco, X., Herrero, J.M., Ramos, C., Sanchis, J.: Monitorización y control de procesos. una visión teórico-práctica aplicada a invernaderos. RIAII 2(4), 5–24 (2005)

    Google Scholar 

  15. Park, D.H., Kang, B.J., Cho, K.R., Shin, C.S., Cho, S.E., Park, J.W., Yang, W.M.: A study on greenhouse automatic control system based on wireless sensor network. Wireless Personal Communications 56(1), 117–130 (2011)

    Article  Google Scholar 

  16. Pawlowski, A., Guzman, J.L., Rodríguez, F., Berenguel, M., Sánchez, J., Dormido, S.: Simulation of greenhouse climate monitoring and control with wireless sensor network and event-based control. Sensors 9(1), 232–252 (2009)

    Article  Google Scholar 

  17. Roldán, J.J., Joossen, G., Sanz, D., del Cerro, J., Barrientos, A.: Mini-uav based sensory system for measuring environmental variables in greenhouses. Sensors 15(2), 3334–3350 (2015)

    Article  Google Scholar 

  18. Ruiz-Garcia, L., Lunadei, L., Barreiro, P., Robla, I.: A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends. Sensors 9(6), 4728–4750 (2009)

    Article  Google Scholar 

  19. Sánchez-Hermosilla, J., González, R., Rodríguez, F., Donaire, J.G.: Mechatronic description of a laser autoguided vehicle for greenhouse operations. Sensors 13(1), 769–784 (2013)

    Article  Google Scholar 

  20. Stanghellini, C., de Jong, T.: A model of humidity and its applications in a greenhouse. Agricultural and Forest Meteorology 76(2), 129–148 (1995)

    Article  Google Scholar 

  21. Valdiviezo, D.V.: Diseño de una red de sensores inalámbrica para agricultura de precisión. PhD thesis (2009)

    Google Scholar 

  22. Zhang, Q., Yang, X., Zhou, Y., Wang, L., Guo, X.: A wireless solution for greenhouse monitoring and control system based on zigbee technology. Journal of Zhejiang University Science A 8(10), 1584–1587 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Jesús Roldán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ruiz-Larrea, A., Roldán, J.J., Garzón, M., del Cerro, J., Barrientos, A. (2016). A UGV Approach to Measure the Ground Properties of Greenhouses. In: Reis, L., Moreira, A., Lima, P., Montano, L., Muñoz-Martinez, V. (eds) Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-319-27149-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27149-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27148-4

  • Online ISBN: 978-3-319-27149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics