Skip to main content

Indoor SLAM for Micro Aerial Vehicles Using Visual and Laser Sensor Fusion

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 417))

Abstract

This paper represents research in progress in Simultaneous Localization and Mapping (SLAM) for Micro Aerial Vehicles (MAVs) in the context of rescue and/or recognition navigation tasks in indoor environments. In this kind of applications, the MAV must rely on its own onboard sensors to autonomously navigate in unknown, hostile and GPS denied environments, such as ruined or semi-demolished buildings. This article aims to investigate a new SLAM technique that fuses laser and visual information, besides measurements from the inertial unit, to robustly obtain the 6DOF pose estimation of a MAV within a local map of the environment. Laser is used to obtain a local 2D map and a footprint estimation of the MAV position, while a monocular visual SLAM algorithm enlarges the pose estimation through an Extended Kalman Filter (EKF). The system consists of a commercial drone and a remote control unit to computationally afford the SLAM algorithms using a distributed node system based on ROS (Robot Operating System). Some experimental results show how sensor fusion improves the position estimation and the obtained map under different test conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: Proc. IEEE Intelligent Conference on Robotics and Automation (ICRA), pp. 2520–2525 (2011)

    Google Scholar 

  2. Lindsey, Q., Mellinger, D., Kumar, V.: Construction of cubic structures with quadrotor teams. In: Proceedings on Robotics: Science and Systems (RSS) (2011)

    Google Scholar 

  3. Kushleyev, A., Mellinger, D., Kumar, V.: Towards a swarm of agile micro quadrotors. In: Proceedings of Robotics: Science and Systems (RRS) (2012)

    Google Scholar 

  4. Grzonka, S., Grisetti, G., Burgard, W.: Towards a navigation system for autonomous indoor flying. In: Proceedings IEEE Intelligent Conference on Robotics and Automation (ICRA) (2009)

    Google Scholar 

  5. Achtelik, M., Lynen, S., Weiss, S., Kneip, L., Chli, M., Siegwart, R.: Visual-inertial SLAM for a small helicopter in large outdoor environments. In: Proceedings IEEE Conference on Intelligent Robots and Systems (IROS), pp. 2651–2652 (2012)

    Google Scholar 

  6. Fraundorfer, F., Heng, L., Honegger, D., Lee, L., Meier, L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor MAV. In: Proceedings IEEE Inter. Conference on Intelligent Robots and Systems (IROS) (2012)

    Google Scholar 

  7. Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: Visual odometry and mapping for autonomous flight using and RGB-D camera. In: Proceedings IEEE Intelligent Symposium of Robotics Research (ISRR), pp. 1–16 (2011)

    Google Scholar 

  8. Bylow, E., Sturm, J., Kerl, C., Kahl, F., Cremers, D.: Real-time camera tracking and 3D reconstruction using signed distance functions. In: Proceedings of Robotics: Science and Systems (RSS) (2013)

    Google Scholar 

  9. Tournier, G.P., Valenti, M., How, J.P., Feron, E.: Estimation and control of a quadrotor vehicle using monocular vision and moiré patterns. In: Proceedings of AIAA GNC, Keystone, Colorado (2006)

    Google Scholar 

  10. Johnson, N.G.: Vision-assisted control of a hovering air vehicle in an indoor setting. Master’s thesis, BYU (2008)

    Google Scholar 

  11. Kemp, C.: Visual Control of a Miniature Quad-Rotor Helicopter. Ph.D. Thesis, Churchill College, University of Cambridge (2006)

    Google Scholar 

  12. Ahrens, S., Levine, D., Andrews, G., How, J.P.: Vision-based guidance and control of a hovering vehicle in unknown, GPS-denied environments. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2643–2648 (2009)

    Google Scholar 

  13. Teulière, C., Marchand, E., Eck, L.: 3-D Model-Based tracking for UAV Indoor Localization. IEEE Transactions on Cybernetics 45(5) (2015)

    Google Scholar 

  14. Brockers, R., Humenberger, M., Weiss, S., Matthies, L.: Towards autonomous navigation of miniature UAV. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (2014)

    Google Scholar 

  15. Moon, S., Eom, W., Gong, H.: Development of a large-scale 3D map generation system for indoor autonomous navigation flight. In: Proceedings of Asia-Pacific International Symposium on Aerospace Technology, APISAT 2014 (2014)

    Google Scholar 

  16. Li, R., Liu, J., Zhang, L., Hang, Y.: LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor envir. In: Inertial Sensors and Systems (2014)

    Google Scholar 

  17. Shen, S., Michael, N., Kumar, V.: Autonomous Multi-Floor Indoor Navigation

    Google Scholar 

  18. Tomic, T., Schmid, K., Lutz, P., Domel, A.: Toward a fully autonomous UAV. In: IEEE Robotics & Automation Magazine (2012)

    Google Scholar 

  19. ardrone2.parrot.com

    Google Scholar 

  20. Bristeau, P.-J., Callou, F., Vissiere, D., Peit, N.: The navigation and control technology inside the AR. Drone micro UAV. In: 18th IFAC World Congress, pp. 1477–1484 (2011)

    Google Scholar 

  21. Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Autonomous Robots 4, 333–349 (1997)

    Article  Google Scholar 

  22. Kohlbrecher, S., Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: Int. Conference Safety Security and Rescue Robotics (SSRR), pp. 155–160 (2011)

    Google Scholar 

  23. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Computer Vision (ECCV 2014), pp. 834–849 (2014)

    Google Scholar 

  24. Engel, J., Sturm, J., Cremers, D.: Accurate figure flying with a quadrocopter using onboard visual and inertial sensing. In: Proceedings of the Workshop on Visual Control of Mobile Robots (ViCoMoR) at the IEEE/RJS International Conference on Intelligent Robot Systems (IROS) (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

López, E. et al. (2016). Indoor SLAM for Micro Aerial Vehicles Using Visual and Laser Sensor Fusion. In: Reis, L., Moreira, A., Lima, P., Montano, L., Muñoz-Martinez, V. (eds) Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 417. Springer, Cham. https://doi.org/10.1007/978-3-319-27146-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27146-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27145-3

  • Online ISBN: 978-3-319-27146-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics