Skip to main content

Sky: Opinion Dynamics Based Consensus for P2P Network with Trust Relationships

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9530))

Abstract

Traditional Byzantine consensus does not work in P2P network due to Sybil attack while the most prevalent Sybil-proof consensus at present can’t resist adversary with dominant compute power. This paper proposed opinion dynamics based consensus consisting of a framework and a model. With the framework, opinion dynamics can be applied in P2P network for consensus which is Sybil-proof and emerges from local interactions of each node with its direct contacts without topology, global information or even sample of the network involved. The model has better performance of convergence than existing opinion dynamics models, and its lower bound of fault tolerance performance is also analyzed and proved. Simulations show that our approach can tolerate failures by at least \(13\,\%\) random nodes or \(2\,\%\) top influential nodes while over \(96\,\%\) correct nodes still make correct decision within 70 s on the SNAP Wikipedia who-votes-on-whom network for initial configuration of convergence \(>\)0.5 with reasonable latencies. Comparing to compute power based consensus, our approach can resist any faulty or malicious nodes by unfollowing them. To the best of our knowledge, it’s the first work to bring opinion dynamics to P2P network for consensus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mean Field Theory (2005). http://en.wikipedia.org/wiki/Mean_field_theory

  2. Alvisi, L., Clement, A., Epasto, A., Lattanzi, S., Panconesi, A.: SoK: the evolution of sybil defense via social networks. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP’13, pp. 382–396. IEEE Computer Society, Washington, DC (2013)

    Google Scholar 

  3. Aspnes, J., Jackson, C., Krishnamurthy, A.: Exposing computationally-challenged Byzantine impostors. Technical report YALEU/DCS/TR-1332, Yale University, Department of Computer Science (2005)

    Google Scholar 

  4. Augustine, J., Pandurangan, G., Robinson, P.: Fast Byzantine agreement in dynamic networks. In: Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing, PODC 2013, pp. 74–83. ACM, New York (2013)

    Google Scholar 

  5. Bazzi, R.A., Konjevod, G.: On the establishment of distinct identities in overlay networks. In: Proceedings of the Twenty-fourth Annual ACM Symposium on Principles of Distributed Computing, PODC 2005, pp. 312–320. ACM, New York (2005)

    Google Scholar 

  6. Borisov, N.: Computational puzzles as sybil defenses. In: Proceedings of the Sixth IEEE International Conference on Peer-to-Peer Computing, P2P 2006, pp. 171–176. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  7. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591–646 (2009)

    Article  Google Scholar 

  8. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing for structured peer-to-peer overlay networks. SIGOPS Oper. Syst. Rev. 36(SI), 299–314 (2002)

    Article  Google Scholar 

  9. Cawrey, D.: Are 51 % attacks a real threat to bitcoin? 20 June 2014. http://www.coindesk.com/51-attacks-real-threat-bitcoin/

  10. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Courtois, N.T., Bahack, L.: On subversive miner strategies and block withholding attack in bitcoin digital currency. CoRR abs/1402.1718 (2014)

    Google Scholar 

  12. Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, M.F., Morris, R.: Designing a DHT for low latency and high throughput. In: Proceedings of the 1st Conference on Symposium on Networked Systems Design and Implementation, NSDI 2004, vol. 1, pp. 7–7. USENIX Association, Berkeley (2004)

    Google Scholar 

  13. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of bounded degree. In: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC 1986, pp. 370–379. ACM, New York (1986)

    Google Scholar 

  15. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gargiulo, F., Huet, S.: Opinion dynamics in a group-based society. EPL (Europhys. Lett.) 91(5), 58004 (2010)

    Article  Google Scholar 

  17. Kim, J.: Safety, liveness and fault tolerance—the consensus choices stellar (2014). https://www.stellar.org/blog/safety_liveness_and_fault_tolerance_consensus_choice/

  18. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection (2014). http://snap.stanford.edu/data

  19. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://www.bitcoin.org/bitcoin.pdf

  20. Poelstra, A.: A treatise on altcoins (2014). https://download.wpsoftware.net/bitcoin/alts.pdf

  21. Schwartz, D., Youngs, N., Britto, A.: The Ripple protocol consensus algorithm (2014). https://ripple.com/files/ripple_consensus_whitepaper.pdf

  22. Singh, A., Castro, M., Druschel, P., Rowstron, A.: Defending against eclipse attacks on overlay networks. In: Proceedings of the 11th Workshop on ACM SIGOPS European Workshop, EW 2011. ACM, New York (2004)

    Google Scholar 

Download references

Acknowledgments

The authors would like to greatly appreciate the anonymous reviewers for their insightful comments. This work was supported by the National Natural Science Foundation of China (Grant No. 61433008), the National High Technology Research and Development Program of China (Grant No. 2013AA013201), and Project of science and technology of Beijing City (Grant No. D151100000815003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwu Shu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, H., Shu, J. (2015). Sky: Opinion Dynamics Based Consensus for P2P Network with Trust Relationships. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9530. Springer, Cham. https://doi.org/10.1007/978-3-319-27137-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27137-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27136-1

  • Online ISBN: 978-3-319-27137-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics