Skip to main content

Energy Saving and Load Balancing for SDN Based on Multi-objective Particle Swarm Optimization

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9530))

Abstract

With the rapid development of cloud computing and large-scale data centers, the problem of network energy consumption is increasingly prominent. Most of the energy saving strategies on current IP network only aggregate traffic into a part of links. It leads to imbalance link utilization and seriously impacts the quality of service. With the emergence of the software defined network, the intelligent energy management becomes possible. In this paper, we take advantage of the centralized control and global vision of SDN to achieve the network energy saving and load balancing by dynamically aggregating and balancing of the traffic while ensuring QoS. We add actual QoS constrains to the basic maximum concurrent flow problem to formulate a multi-objective mixed integer programming model and we propose a multi-objective particle swarm optimization algorithm called MOPSO to solve this NP-hard problem. MOPSO distribute optimal paths for dynamic traffic demands and make idol switches and links into sleeping mode. Simulation results on real topologies and traffic demands show the effectiveness of our algorithm both on the objective of energy saving and load balancing compared with other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolla, R., Bruschi, R., Carrega, A., Davoli, F.: Green networking with packet processing engines: modeling and optimization. IEEE/ACM Trans. Networking (TON) 22(1), 110–123 (2014)

    Article  Google Scholar 

  2. Amaldi, E., Capone, A., Coniglio, S., Gianoli, L.G.: Energy-aware traffic engineering with elastic demands and MMF bandwidth allocation. In: IEEE 18th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 169–174. IEEE Press, USA (2013)

    Google Scholar 

  3. Yun, D., Lee, J.: Research in green network for future internet. J. KIISE 28(1), 41–51 (2010)

    MathSciNet  Google Scholar 

  4. Bianzino, A.P., Chaudet, C., Rossi, D., Rougier, J.: A survey of green networking research. Commun. Surv. Tutorials 14(1), 3–20 (2012)

    Article  Google Scholar 

  5. Hong, C.Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M., Wattenhofer, R.: Achieving high utilization with software-driven WAN. SIGCOMM 43(4), 15–26 (2013)

    Article  Google Scholar 

  6. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks. SIGCOMM 38(2), 69–74 (2008)

    Article  Google Scholar 

  7. Nunes, B.A.A., Mendonca, M., Xuan-Nam, N., Obraczka, K., Turletti, T.: A survey of software-defined networking: past, present, and future of programmable networks. Commu. Surv. Tutorials 16(3), 1617–1634 (2014)

    Article  Google Scholar 

  8. Shahrokhi, F., Matula, D.W.: The maximum concurrent flow problem. J. Assoc. Comput. Mach. 37(2), 318–334 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gupta, M., Singh, S.: Greening of the Internet. In: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 19–26. ACM, USA (2003)

    Google Scholar 

  10. Gupta, M., Singh, S.: Using low-power modes for energy conservation in Ethernet LANs. In: INFOCOM, pp. 2451–2455. IEEE Press, USA (2007)

    Google Scholar 

  11. Gunaratne, C., Christensen, K., Suen, S.W.: Ethernet adaptive link rate (alr): analysis of a buffer threshold policy. In: Global Telecommunications Conference, 2006, GLOBECOM 2006, pp. 1–6. IEEE Press, USA (2006)

    Google Scholar 

  12. Gunaratne, C., Christensen, K., Nordman, B., Suen, S.: Reducing the energy consumption of Ethernet with adaptive link rate (ALR). IEEE Trans. Comput. 57(4), 448–461 (2008)

    Article  MathSciNet  Google Scholar 

  13. Chiaraviglio, L., Mellia, M., Neri, F.: Reducing power consumption in backbone networks. In: IEEE International Conference on Communications ICC 2009, pp. 1–6. IEEE Press, USA (2009)

    Google Scholar 

  14. Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S., McKeown, N.: ElasticTree: saving energy in data center networks. In: NSDI, pp. 249–264. USENIX, USA (2010)

    Google Scholar 

  15. Chabarek, J., Sommers, J., Barford, P., Estan, C., Tsiang, D., Wright, S.: Power awareness in network design and routing. In: The 27th Conference on Computer Communications INFOCOM 2008, pp. 116–130. IEEE Press, USA (2008)

    Google Scholar 

  16. Rui, W., Zhipeng, J., Suixiang, G., Wenguo, Y., Yinben, X., Mingming, Z.: Energy-aware routing algorithms in software-defined networks. In: 2014 IEEE 15th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 6–20. IEEE Press, USA (2014)

    Google Scholar 

  17. Tu, R.L., Wang, X., Yang, Y.: Energy-saving model for SDN data centers. J. Supercomput 70(3), 1477–1495 (2014)

    Article  Google Scholar 

  18. Wang, J., Chen, X., Phillips, C., Yan, Y.: Energy efficiency with QoS control in dynamic optical networks with SDN enabled integrated control plane. Comput. Netw. 78(2), 57–67 (2015)

    Google Scholar 

  19. Orlowski, S., Wessäly, R., Pióro, M., Tomaszewski, A.: SNDlib 1.0—survivable network design library. Networks 55(3), 276–286 (2010)

    Google Scholar 

Download references

Acknowledgments

The study is supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2015FM008; ZR2013FM029), the Science and Technology Development Program of Jinan (Grant No. 201303010), the National Natural Science Foundation of China (NSFC No. 60773101), and the Fundamental Research Funds of Shandong University (Grant No. 2014JC037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhu, R., Wang, H., Gao, Y., Yi, S., Zhu, F. (2015). Energy Saving and Load Balancing for SDN Based on Multi-objective Particle Swarm Optimization. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9530. Springer, Cham. https://doi.org/10.1007/978-3-319-27137-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27137-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27136-1

  • Online ISBN: 978-3-319-27137-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics