Skip to main content

Risk-Reducing (Chemopreventive) Agents in Breast Cancer Prevention

  • Chapter
  • First Online:
Trends in Breast Cancer Prevention

Abstract

The use of risk-reducing medications to prevent the development of malignant diseases has been promoted for more than 20 years. Successful examples have mostly involved the use of hormone antagonists and SERMs as well as anti-inflammatory drugs, and were mostly reserved for high risk patients.

In this chapter we discuss the current evidence available for the association between breast cancer and commonly used drugs suggested in the literature as carrying potential preventive activity against breast cancer in vitro, in animal models and in humans. These include vitamin D, bisphosphonates, statins and metformin, all of which are in use for a variety of non-cancer related indications.

While all of these compounds have shown a high level of anti-breast cancer activity, in one or more of the different experimental platforms, none have been shown to be preventive in randomized controlled trials (RCTs). Therefore these drugs have not been formally approved for actual use in prevention, in either average-risk or high-risk women. This might reflect the fact that it is extremely hard to use RCTs that employ medications that are in common use, because of a major bias that is introduced if one randomizes only the fraction of the population that is not already using the drug for other indications. However, a common use of these compounds by the population, if actually have a true preventive effect, would lead to reduction in incidence of breast cancer in the population at large by way of a “natural experiment”. The current reduction in breast cancer incidence and mortality seen in many western countries can actually be attributed, at least in part, to an inadvertent effect of these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO. Breast cancer prevention and control. 2015. http://www.who.int/cancer/detection/breastcancer/en/index1.html. Accessed 18 June 2015

  2. Byrns MC, Penning TM. Environmental toxicology: carcinogens and heavy metals. In: In: Brunton LL (ed) Goodman and Gilman’s pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011. p. 1853–60.

    Google Scholar 

  3. Szabo E. Selecting targets for cancer prevention: where do we go from here? Nat Rev Cancer. 2006;6(11):867–74.

    Article  CAS  PubMed  Google Scholar 

  4. Friedman PA. Agents affecting mineral ion homeostasis and bone turnover. In: Brunton LL, editor. Goodman and Gilman’s pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011. p. 1275–306.

    Google Scholar 

  5. Winter MC, Holen I, Coleman RE. Exploring the anti-tumour activity of bisphosphonates in early breast cancer. Cancer Treat Rev. 2008;34(5):453–75. doi:10.1016/j.ctrv.2008.02.004.

    Article  CAS  PubMed  Google Scholar 

  6. Santini D, Fratto ME, Vincenzi B, et al. Bisphosphonate effects in cancer and inflammatory diseases: in vitro and in vivo modulation of cytokine activities. BioDrugs. 2004;18(4):269–78.

    Article  CAS  PubMed  Google Scholar 

  7. Daubiné F, Le Gall C, Gasser J, et al. Antitumor effects of clinical dosing regimens of bisphosphonates in experimental breast cancer bone metastasis. J Natl Cancer Inst. 2007;99(4):322–30.

    Article  PubMed  CAS  Google Scholar 

  8. Ottewell PD, Mönkkönen H, Jones M, et al. Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J Natl Cancer Inst. 2008;100(16):1167–78. doi:10.1093/jnci/djn240.

    Article  CAS  PubMed  Google Scholar 

  9. Hiraga T, Williams PJ, Ueda A, et al. Zoledronic acid inhibits visceral metastases in the 4T1/luc mouse breast cancer model. Clin Cancer Res. 2004;10(13):4559–67.

    Article  CAS  PubMed  Google Scholar 

  10. Fehm T, Zwirner M, Wallwiener D, et al. Antitumor activity of zoledronic acid in primary breast cancer cells determined by the ATP tumor chemosensitivity assay. BMC Cancer. 2012;12:308. doi:10.1186/1471-2407-12-308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Senaratne SG, Mansi JL, Colston KW. The bisphosphonate zoledronic acid impairs Ras membrane localisation and induces cytochrome c release in breast cancer cells. Br J Cancer. 2002;86(9):1479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Almubarak H, Jones A, Chaisuparat R, et al. Zoledronic acid directly suppresses cell proliferation and induces apoptosis in highly tumorigenic prostate and breast cancers. J Carcinog. 2011;10:2. doi:10.4103/1477-3163.75723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Senaratne SG, Pirianov G, Mansi JL, et al. Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer. 2000;82(8):1459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fromigue O, Lagneaux L, Body JJ. Bisphosphonates induce breast cancer cell death in vitro. J Bone Miner Res. 2000;15(11):2211–21.

    Article  CAS  PubMed  Google Scholar 

  15. Neville-Webbe HL, Coleman RE, Holen I. Combined effects of the bisphosphonate, zoledronic acid and the aromatase inhibitor letrozole on breast cancer cells in vitro: evidence of synergistic interaction. Br J Cancer. 2010;102(6):1010–7. doi:10.1038/sj.bjc.6605579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Issat T, Nowis D, Legat M, et al. Potentiated antitumor effects of the combination treatment with statins and pamidronate in vitro and in vivo. Int J Oncol. 2007;30(6):1413–25.

    CAS  PubMed  Google Scholar 

  17. Hirbe AC, Roelofs AJ, Floyd DH, et al. The bisphosphonate zoledronic acid decreases tumor growth in bone in mice with defective osteoclasts. Bone. 2009;44(5):908–16. doi:10.1016/j.bone.2009.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ottewell PD, Lefley DV, Cross SS, et al. Sustained inhibition of tumor growth and prolonged survival following sequential administration of doxorubicin and zoledronic acid in a breast cancer model. Int J Cancer. 2010;126(2):522–32. doi:10.1002/ijc.24756.

    Article  CAS  PubMed  Google Scholar 

  19. Fromigue O, Kheddoumi N, Body JJ. Bisphosphonates antagonise bone growth factors’ effects on human breast cancer cells survival. Br J Cancer. 2003;89(1):178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuen T, Stachnik A, Iqbal J, et al. Bisphosphonates inactivate human EGFRs to exert antitumor actions. Bisphosphonates inactivate human EGFRs to exert antitumor actions. Proc Natl Acad Sci U S A. 2014;111(50):17989–94. doi:10.1073/pnas.1421410111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lan YC, Chang CL, Sung MT, et al. Zoledronic acid-induced cytotoxicity through endoplasmic reticulum stress triggered REDD1-mTOR pathway in breast cancer cells. Anticancer Res. 2013;33(9):3807–14.

    CAS  PubMed  Google Scholar 

  22. Misso G, Porru M, Stoppacciaro A, et al. Evaluation of the in vitro and in vivo antiangiogenic effects of denosumab and zoledronic acid. Cancer Biol Ther. 2012;13(14):1491–500. doi:10.4161/cbt.22274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wood J, Bonjean K, Ruetz S, et al. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther. 2002;302(3):1055–61.

    Article  CAS  PubMed  Google Scholar 

  24. Tang X, Zhang Q, Shi S, et al. Bisphosphonates suppress insulin-like growth factor 1-induced angiogenesis via the HIF-1alpha/VEGF signaling pathways in human breast cancer cells. Int J Cancer. 2010;126(1):90–103. doi:10.1002/ijc.24710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roelofs AJ, Jauhiainen M, Mönkkönen H, et al. Peripheral blood monocytes are responsible for gammadelta T cell activation induced by zoledronic acid through accumulation of IPP/DMAPP. Br J Haematol. 2009;144(2):245–50. doi:10.1111/j.1365-2141.2008.07435.x.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Clézardin P. Mechanisms of action of bisphosphonates in oncology: a scientific concept evolving from antiresorptive to anticancer activities. Bonekey Rep. 2013;2:267. doi:10.1038/bonekey.2013.1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Melani C, Sangaletti S, Barazzetta FM, et al. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 2007;67(23):11438–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rennert G, Pinchev M, Rennert HS, et al. Use of bisphosphonates and reduced risk of colorectal cancer. J Clin Oncol. 2011;29(9):1146–50.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rennert G, Rennert HS, Pinchev M, et al. The effect of bisphosphonates on the risk of endometrial and ovarian malignancies. Gynecol Oncol. 2014;133(2):309–13. doi:10.1016/j.ygyno.2014.02.014.

    Article  CAS  PubMed  Google Scholar 

  30. Gronich N, Rennert G. Beyond aspirin-cancer prevention with statins, metformin and bisphosphonates. Nat Rev Clin Oncol. 2013;10(11):625–42. doi:10.1038/nrclinonc.2013.169.

    Article  CAS  PubMed  Google Scholar 

  31. Cardwell CR, Abnet CC, Veal P, et al. Exposure to oral bisphosphonates and risk of cancer. Int J Cancer. 2012;131(5):E717–25. doi:10.1002/ijc.27389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rennert G, Pinchev M. Rennert HS (2010) Use of bisphosphonates and risk of postmenopausal breast cancer. J Clin Oncol. 2010;28(22):3577–81. doi:10.1200/JCO.2010.28.1113.

    Article  CAS  PubMed  Google Scholar 

  33. Chlebowski RT, Chen Z, Cauley JA, et al. Oral bisphosphonate use and breast cancer incidence in postmenopausal women. J Clin Oncol. 2010;28(22):3582–90. doi:10.1200/JCO.2010.28.2095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Newcomb PA, Trentham-Dietz A, Hampton JM. Bisphosphonates for osteoporosis treatment are associated with reduced breast cancer risk. Br J Cancer. 2010;102(5):799–802. doi:10.1038/sj.bjc.6605555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Monsees GM, Malone KE, Tang MT, et al. Bisphosphonate use after estrogen receptor-positive breast cancer and risk of contralateral breast cancer. J Natl Cancer Inst. 2011;103(23):1752–60. doi:10.1093/jnci/djr399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gnant M, Mlineritsch B, Schippinger W, et al. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med. 2009;360(7):679–91. doi:10.1056/NEJMoa0806285.

    Article  CAS  PubMed  Google Scholar 

  37. Gnant M, Mlineritsch B, Stoeger H, et al. Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 62-month follow-up from the ABCSG-12 randomised trial. Lancet Oncol. 2011;12(7):631–41. doi:10.1016/S1470-2045(11)70122-X.

    Article  CAS  PubMed  Google Scholar 

  38. Gnant M, Mlineritsch B, Stoeger H, et al. Zoledronic acid combined with adjuvant endocrine therapy of tamoxifen versus anastrozol plus ovarian function suppression in premenopausal early breast cancer: final analysis of the Austrian Breast and Colorectal Cancer Study Group Trial 12. Ann Oncol 2015. 2015;26(2):313–20. doi:10.1093/annonc/mdu544.

    Google Scholar 

  39. Eidtmann H, de Boer R, Bundred N, et al. Efficacy of zoledronic acid in postmenopausal women with early breast cancer receiving adjuvant letrozole: 36-month results of the ZO-FAST Study. Ann Oncol. 2010;21(11):2188–94. doi:10.1093/annonc/mdq217.

    Article  CAS  PubMed  Google Scholar 

  40. Coleman RE, Marshall H, Cameron D, et al. Breast-cancer adjuvant therapy with zoledronic acid. N Engl J Med. 2011;365(15):1396–405. doi:10.1056/NEJMoa1105195.

    Article  CAS  PubMed  Google Scholar 

  41. Coleman R, Cameron D, Dodwell D, et al. Adjuvant zoledronic acid in patients with early breast cancer: final efficacy analysis of the AZURE (BIG 01/04) randomised open-label phase 3 trial. Lancet Oncol. 2014;15(9):997–1006. doi:10.1016/S1470-2045(14)70302-X.

    Article  CAS  PubMed  Google Scholar 

  42. Coleman RE, Winter MC, Cameron D, et al. The effects of adding zoledronic acid to neoadjuvant chemotherapy on tumour response: exploratory evidence for direct anti-tumour activity in breast cancer. Br J Cancer. 2010;102(7):1099–105. doi:10.1038/sj.bjc.6605604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Charehbili A, van de Ven S, Smit VT, et al. Addition of zoledronic acid to neoadjuvant chemotherapy does not enhance tumor response in patients with HER2-negative stage II/III breast cancer: the NEOZOTAC trial (BOOG 2010-01). Ann Oncol. 2014;25(5):998–1004. doi:10.1093/annonc/mdu102.

    Article  CAS  PubMed  Google Scholar 

  44. Hue TF, Cummings SR, Cauley JA, et al. Effect of bisphosphonate use on risk of postmenopausal breast cancer: results from the randomized clinical trials of alendronate and zoledronic acid. JAMA Intern Med. 2014;174(10):1550–7. doi:10.1001/jamainternmed.2014.3634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Powers AC, D’Alessio D. Endocrine Pancreas and Pharmacotherapy of Diabetes Mellitus and Hypoglycemia. In: Brunton LL, editor. Goodman and Gilman’s pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011. p. 1237–73.

    Google Scholar 

  46. Corominas-Faja B, Quirantes-Piné R, Oliveras-Ferraros C, et al. Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner similar to the antifolate class of chemotherapy drugs. Aging (Albany NY). 2012;4(7):480–98.

    Article  CAS  Google Scholar 

  47. Chou CC, Lee KH, Lai IL, et al. AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis. Cancer Res. 2014;74(17):4783–95. doi:10.1158/0008-5472.CAN-14-0135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chhipa RR, Wu Y, Mohler JL, et al. Survival advantage of AMPK activation to androgen-independent prostate cancer cells during energy stress. Cell Signal. 2010;22(10):1554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hu T, Chung YM, Guan M, et al. Reprogramming ovarian and breast cancer cells into non-cancerous cells by low-dose metformin or SN-38 through FOXO3 activation. Sci Rep. 2014;4:5810. doi:10.1038/srep05810.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhuang Y, Chan DK, Haugrud AB, et al. Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo. PLoS One. 2014;9(9), e108444. doi:10.1371/journal.pone.0108444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Fuentes-Mattei E, Velazquez-Torres G, Phan L, et al. Effects of obesity on transcriptomic changes and cancer hallmarks in estrogen receptor-positive breast cancer. J Natl Cancer Inst. 2014;106(7). pii:dju158. doi:10.1093/jnci/dju158

  52. Barbieri F, Thellung S, Ratto A, et al. In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translationalimplications for human tumors. BMC Cancer. 2015;15:228. doi:10.1186/s12885-015-1235-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Anisimov VN, Egormin PA, Piskunova TS, et al. Metformin extends life span of HER-2/neu transgenic mice and in combination with melatonin inhibits growth of transplantable tumors in vivo. Cell Cycle. 2010;9(1):188–97.

    Article  CAS  PubMed  Google Scholar 

  54. Hadad SM, Hardie DG, Appleyard V, et al. Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clin Transl Oncol. 2014;16(8):746–52. doi:10.1007/s12094-013-1144-8.

    Article  CAS  PubMed  Google Scholar 

  55. Queiroz EA, Puukila S, Eichler R, et al. Metformin induces apoptosis and cell cycle arrest mediated by oxidativestress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS One. 2014;9(5), e98207. doi:10.1371/journal.pone.0098207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Song CW, Lee H, Dings RP, et al. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci Rep. 2012;2:362. doi:10.1038/srep00362.

    PubMed  PubMed Central  Google Scholar 

  57. Liu B, Fan Z, Edgerton SM, et al. Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle. 2009;8(13):2031–40.

    Article  CAS  PubMed  Google Scholar 

  58. Alimova IN, Liu B, Fan Z, et al. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle. 2009;8(6):909–15.

    Article  CAS  PubMed  Google Scholar 

  59. Guo LS, Li HX, Li CY, et al. Synergistic antitumor activity of vitamin D3 combined with metformin in human breast carcinoma MDA-MB-231 cells involves m-TOR related signaling pathways. Pharmazie. 2015;70(2):117–22.

    CAS  PubMed  Google Scholar 

  60. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62. doi:10.1038/nrm3311.

    Article  CAS  PubMed  Google Scholar 

  61. Pollak M. Metformin and other biguanides in oncology: advancing the research agenda. Cancer Prev Res (Phila). 2010;3(9):1060–5. doi:10.1158/1940-6207.CAPR-10-0175.

    Article  CAS  Google Scholar 

  62. Liu B, Fan Z, Edgerton SM, et al. Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions. Cell Cycle. 2011;10(17):2959–66.

    Article  CAS  PubMed  Google Scholar 

  63. Menendez JA, Oliveras-Ferraros C, Cufí S, et al. Metformin is synthetically lethal with glucose withdrawal in cancer cells. Cell Cycle. 2012;11(15):2782–92. doi:10.4161/cc.20948.

    Article  CAS  PubMed  Google Scholar 

  64. Wahdan-Alaswad RS, Cochrane DR, Spoelstra NS, et al. Metformin-induced killing of triple-negative breast cancer cells is mediated by reduction in fatty acid synthase via miRNA-193b. Horm Cancer. 2014;5(6):374–89. doi:10.1007/s12672-014-0188-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fan C, Wang Y, Liu Z, et al. Metformin exerts anticancer effects through the inhibition of the Sonichedgehog signaling pathway in breast cancer. Int J Mol Med. 2015;36(1):204–14. doi:10.3892/ijmm.2015.2217.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Du Y, Zheng H, Wang J, et al. Metformin inhibits histone H2B monoubiquitination and downstream gene transcription in human breast cancer cells. Oncol Lett. 2014;8(2):809–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ishibashi Y, Matsui T, Takeuchi M, et al. Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm Metab Res. 2013;45(5):387–90. doi:10.1055/s-0032-1331204.

    CAS  PubMed  Google Scholar 

  68. Oliveras-Ferraros C, Cufí S, Vazquez-Martin A, et al. Metformin rescues cell surface major histocompatibility complex class I (MHC-I) deficiency caused by oncogenic transformation. Cell Cycle. 2012;11(5):865–70. doi:10.4161/cc.11.5.19252.

    Article  CAS  PubMed  Google Scholar 

  69. Brown KA, Hunger NI, Docanto M, et al. Metformin inhibits aromatase expression in human breast adipose stromal cells via stimulation of AMP-activated protein kinase. Breast Cancer Res Treat. 2010;123(2):591–6. doi:10.1007/s10549-010-0834-y.

    Article  CAS  PubMed  Google Scholar 

  70. Cioce M, Valerio M, Casadei L, et al. Metformin-induced metabolic reprogramming of chemoresistant ALDH bright breast cancer cells. Oncotarget. 2014;5(12):4129–43.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Qu C, Zhang W, Zheng G, et al. Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol Cell Biochem. 2014;386(1-2):63–71. doi:10.1007/s11010-013-1845-x.

    Article  CAS  PubMed  Google Scholar 

  72. Redaniel MT, Jeffreys M, May MT, et al. Associations of type 2 diabetes and diabetes treatment with breast cancer risk and mortality: a population-based cohort study among British women. Cancer Causes Control. 2012;23(11):1785–95. doi:10.1007/s10552-012-0057-0.

    Article  PubMed  Google Scholar 

  73. Hsieh MC, Lee TC, Cheng SM, et al. The influence of type 2 diabetes and glucose-lowering therapies on cancer risk in the Taiwanese. Exp Diabetes Res. 2012;2012:413782. doi:10.1155/2012/413782.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Calip GS, Yu O, Hoskins KF, et al. Associations between diabetes medication use and risk of second breast cancer events and mortality. Cancer Causes Control. 2015;26(8):1065–77.

    Article  PubMed  Google Scholar 

  75. García-Esquinas E, Guinó E, Castaño-Vinyals G, et al. Association of diabetes and diabetes treatment with incidence of breast cancer. Acta Diabetol. 2015. doi:10.1007/s00592-015-0756-6.

    PubMed  PubMed Central  Google Scholar 

  76. Chlebowski RT, McTiernan A, Wactawski-Wende J, et al. Diabetes, metformin, and breast cancer in postmenopausal women. J Clin Oncol. 2012;30(23):2844–52. doi:10.1200/JCO.2011.39.7505.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bosco JL, Antonsen S, Sørensen HT, et al. Metformin and incident breast cancer among diabetic women: a population-based case-control study in Denmark. Cancer Epidemiol Biomarkers Prev. 2011;20(1):101–11. doi:10.1158/1055-9965.EPI-10-0817.

    Article  CAS  PubMed  Google Scholar 

  78. Qiu H, Rhoads GG, Berlin JA, et al. Initial metformin or sulphonylurea exposure and cancer occurrence among patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2013;15(4):349–57. doi:10.1111/dom.12036.

    Article  CAS  PubMed  Google Scholar 

  79. Dowling RJ, Niraula S, Chang MC, et al. Changes in insulin receptor signaling underlie neoadjuvant metformin administration in breast cancer: a prospective window of opportunity neo adjuvant study. Breast Cancer Res. 2015;17:32. doi:10.1186/s13058-015-0540-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Hadad SM, Coates P, Jordan LB, et al. Evidence for biological effects of metformin in operable breast cancer: biomarker analysis in a pre-operative window of opportunity randomized trial. Breast Cancer Res Treat. 2015;150(1):149–55. doi:10.1007/s10549-015-3307-5.

    Article  CAS  PubMed  Google Scholar 

  81. Niraula S, Dowling RJ, Ennis M, et al. Metformin in early breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res Treat. 2012;135(3):821–30. doi:10.1007/s10549-012-2223-1.

    Article  CAS  PubMed  Google Scholar 

  82. Kalinsky K, Crew KD, Refice S, et al. Presurgical trial of metformin in overweight and obese patients with newly diagnosed breast cancer. Cancer Invest. 2014;32(4):150–7. doi:10.3109/07357907.2014.889706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bonanni B, Puntoni M, Cazzaniga M, et al. Dual effect of metformin on breast cancer proliferation in a randomized presurgical trial. J Clin Oncol. 2012;30(21):2593–600. doi:10.1200/JCO.2011.39.3769.

    Article  CAS  PubMed  Google Scholar 

  84. Bersot TP. Drug Therapy for hypercholesterolemia and dyslipidemia. In: Brunton LL, editor. Goodman and Gilman’s pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011. p. 877–908.

    Google Scholar 

  85. Jain MK, Ridker PM. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005;4(12):977–87.

    Article  CAS  PubMed  Google Scholar 

  86. Kwak B, Mulhaupt F, Myit S, et al. Statins as a newly recognized type of immunomodulator. Nat Med. 2000;6(12):1399–402.

    Article  CAS  PubMed  Google Scholar 

  87. Gazzerro P, Proto MC, Gangemi G, et al. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev. 2012;64(1):102–46. doi:10.1124/pr.111.004994.

    Article  CAS  PubMed  Google Scholar 

  88. Seeger H, Wallwiener D, Mueck AO. Statins Can Inhibit Proliferation of Human Breast Cancer Cells in Vitro. Exp Clin Endocrinol Diabetes. 2003;111(1):47–8.

    Article  CAS  PubMed  Google Scholar 

  89. Campbell MJ, Esserman LJ, Zhou Y, et al. Breast cancer growth prevention by statins. Cancer Res. 2006;66(17):8707–14.

    Article  CAS  PubMed  Google Scholar 

  90. Mueck AO, Seeger H, Wallwiener D. Effect of statins combined with estradiol on the proliferation of human receptor-positive and receptor-negative breast cancer cells. Menopause. 2003;10(4):332–6.

    Article  PubMed  Google Scholar 

  91. Koyuturk M, Ersoz M, Altiok N. Simvastatin induces apoptosis in human breast cancer cells: p53 and estrogen receptor independent pathway requiring signalling through JNK. Cancer Lett. 2007;250(2):220–8.

    Article  CAS  PubMed  Google Scholar 

  92. Kanugula AK, Gollavilli PN, Vasamsetti SB, et al. Statin-induced inhibition of breast cancer proliferation and invasion involves attenuation of iron transport: intermediacy of nitric oxide and antioxidant defence mechanisms. FEBS J. 2014;281(16):3719–38. doi:10.1111/febs.12893.

    Article  CAS  PubMed  Google Scholar 

  93. Duncan RE, El-Sohemy A, Archer MC. Mevalonate promotes the growth of tumors derived from human cancer cells in vivo and stimulates proliferation in vitro with enhanced cyclin-dependent kinase-2 activity. J Biol Chem. 2004;279(32):33079–84.

    Article  CAS  PubMed  Google Scholar 

  94. Alonso DF, Farina HG, Skilton G, et al. Reduction of mouse mammary tumor formation and metastasis by lovastatin, an inhibitor of the mevalonate pathway of cholesterol synthesis. Breast Cancer Res Treat. 1998;50(1):83–93.

    Article  CAS  PubMed  Google Scholar 

  95. Kubatka P, Zihlavniková K, Kajo K, et al. Antineoplastic effects of simvastatin in experimental breast cancer. Klin Onkol. 2011;24(1):41–5.

    CAS  PubMed  Google Scholar 

  96. Kubatka P, Kajo K, Zihlavnikova K, et al. Immunohistochemical and histomorphological analysis of rat mammary tumors after simvastatin treatment. Neoplasma. 2012;59(5):516–23. doi:10.4149/neo_2012_066.

    Article  CAS  PubMed  Google Scholar 

  97. Rao S, Porter DC, Chen X, et al. Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. Proc Natl Acad Sci U S A. 1999;96(14):7797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Denoyelle C, Vasse M, Körner M, et al. Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly invasive breast cancer cell lines: an in vitro study. Carcinogenesis. 2001;22(8):1139–48.

    Article  CAS  PubMed  Google Scholar 

  99. Denoyelle C, Albanese P, Uzan G, et al. Molecular mechanism of the anti-cancer activity of cerivastatin, an inhibitor of HMG-CoA reductase, on aggressive human breast cancer cells. Cell Signal. 2003;15(3):327–38.

    Article  CAS  PubMed  Google Scholar 

  100. Klawitter J, Shokati T, Moll V, et al. Effects of lovastatin on breast cancer cells: a proteo-metabonomic study. Breast Cancer Res. 2010;12(2):R16. doi:10.1186/bcr2485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kusama T, Mukai M, Tatsuta M, et al. Inhibition of transendothelial migration and invasion of human breast cancer cells by preventing geranylgeranylation of Rho. Int J Oncol. 2006;29(1):217–23.

    CAS  PubMed  Google Scholar 

  102. Freed-Pastor WA, Mizuno H, Zhao X, et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell. 2012;148(1-2):244–58. doi:10.1016/j.cell.2011.12.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yu X, Luo Y, Zhou Y, et al. BRCA1 overexpression sensitizes cancer cells to lovastatin via regulation of cyclin D1-CDK4-p21WAF1/CIP1 pathway: analyses using a breast cancer cell line and tumoral xenograft model. Int J Oncol. 2008;33(3):555–63.

    CAS  PubMed  Google Scholar 

  104. Poynter JN, Gruber SB, Higgins PD, et al. Statins and the risk of colorectal cancer. N Engl J Med. 2005;352(21):2184–92.

    Article  CAS  PubMed  Google Scholar 

  105. Lavie O, Pinchev M, Rennert HS, et al. The effect of statins on risk and survival of gynecological malignancies. Gynecol Oncol. 2013;130(3):615–9. doi:10.1016/j.ygyno.2013.05.025.

    Article  CAS  PubMed  Google Scholar 

  106. Cauley JA, Zmuda JM, Lui LY, et al. Lipid-lowering drug use and breast cancer in older women: a prospective study. J Womens Health (Larchmt). 2003;12(8):749–56.

    Article  Google Scholar 

  107. Cauley JA, McTiernan A, Rodabough RJ, et al. Women’s Health Initiative Research Group. Statin use and breast cancer: prospective results from the Women’s Health Initiative. J Natl Cancer Inst. 2006;98(10):700–7.

    Article  CAS  PubMed  Google Scholar 

  108. Desai P, Chlebowski R, Cauley JA, et al. Prospective analysis of association between statin use and breast cancer risk in the women’s health initiative. Cancer Epidemiol Biomarkers Prev. 2013;22(10):1868–76. doi:10.1158/1055-9965.EPI-13-0562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Boudreau DM, Gardner JS, Malone KE, et al. The association between 3-hydroxy-3-methylglutaryl conenzyme A inhibitor use and breast carcinoma risk among postmenopausal women: a case-control study. Cancer. 2004;100(11):2308–16.

    Article  CAS  PubMed  Google Scholar 

  110. Haukka J, Sankila R, Klaukka T, et al. Incidence of cancer and statin usage--record linkage study. Int J Cancer. 2010;126(1):279–84. doi:10.1002/ijc.24536.

    Article  CAS  PubMed  Google Scholar 

  111. Woditschka S, Habel LA, Udaltsova N, et al. Lipophilic statin use and risk of breast cancer subtypes. Cancer Epidemiol Biomarkers Prev. 2010;19(10):2479–87. doi:10.1158/1055-9965.EPI-10-0524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jacobs EJ, Newton CC, Thun MJ, et al. Long-term use of cholesterol-lowering drugs and cancer incidence in a large United States cohort. Cancer Res. 2011;71(5):1763–71. doi:10.1158/0008-5472.CAN-10-2953.

    Article  CAS  PubMed  Google Scholar 

  113. Boudreau DM, Yu O, Miglioretti DL, et al. Statin use and breast cancer risk in a large population-based setting. Cancer Epidemiol Biomarkers Prev. 2007;16(3):416–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kwan ML, Habel LA, Flick ED, et al. Post-diagnosis statin use and breast cancer recurrence in a prospective cohort study of early stage breast cancer survivors. Breast Cancer Res Treat. 2008;109(3):573–9.

    Article  CAS  PubMed  Google Scholar 

  115. Ahern TP, Pedersen L, Tarp M, et al. Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J Natl Cancer Inst. 2011;103(19):1461–8. doi:10.1093/jnci/djr291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kemmis CM, Salvador SM, Smith KM, et al. Human mammary epithelial cells express CYP27B1 and are growth inhibited by 25-hydroxyvitamin D-3, the major circulating form of vitamin D-3. J Nutr. 2006;136(4):887–92.

    CAS  PubMed  Google Scholar 

  117. Friedrich M, Diesing D, Cordes T, et al. Analysis of 25-hydroxyvitamin D3-1alpha-hydroxylase in normal and malignant breast tissue. Anticancer Res. 2006;26(4A):2615–20.

    CAS  PubMed  Google Scholar 

  118. Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700.

    Article  CAS  PubMed  Google Scholar 

  119. Friedrich M, Rafi L, Mitschele T, et al. Analysis of the vitamin D system in cervical carcinomas, breast cancer and ovarian cancer. Recent Results Cancer Res. 2003;164:239–46.

    Article  CAS  PubMed  Google Scholar 

  120. Colston KW, Chander SK, Mackay AG, et al. Effects of synthetic vitamin D analogues on breast cancer cell proliferation in vivo and in vitro. Biochem Pharmacol. 1992;44(4):693–702.

    Article  CAS  PubMed  Google Scholar 

  121. Saez S, Falette N, Guillot C, et al. 1,25(OH)2D3 modulation of mammary tumor cell growth in vitro and in vivo. Breast Cancer Res Treat. 1993;27(1-2):69–81.

    Article  CAS  PubMed  Google Scholar 

  122. Zinser G, Packman K, Welsh J. Vitamin D(3) receptor ablation alters mammary gland orphogenesis. Development. 2002;129(13):3067–76.

    CAS  PubMed  Google Scholar 

  123. Rossdeutscher L, Li J, Luco AL, et al. Chemoprevention activity of 25-hydroxyvitamin D in the MMTV-PyMT mouse model of breast cancer. Cancer Prev Res (Phila). 2014;8(2):120–8. doi:10.1158/1940-6207.CAPR-14-0110.

    Article  CAS  Google Scholar 

  124. Lee HJ, Paul S, Atalla N, et al. Gemini vitamin D analogues inhibit estrogen receptor-positive and estrogen receptor-negative mammary tumorigenesis without hypercalcemic toxicity. Cancer Prev Res (Phila). 2008;1(6):476–84. doi:10.1158/1940-6207.CAPR-08-0084.

    Article  CAS  Google Scholar 

  125. Zinser GM, Welsh J. Vitamin D receptor status alters mammary gland morphology and tumorigenesis in MMTV-neu mice. Carcinogenesis. 2004;25(12):2361–72.

    Article  CAS  PubMed  Google Scholar 

  126. Capiati DA, Rossi AM, Picotto G, et al. Inhibition of serum-stimulated mitogen activated protein kinase by 1alpha,25(OH)2-vitamin D3 in MCF-7 breast cancer cells. J Cell Biochem. 2004;93(2):384–97.

    Article  CAS  PubMed  Google Scholar 

  127. Lee HJ, So JY, DeCastro A, et al. Gemini vitamin D analog suppresses ErbB2-positive mammary tumor growth via inhibition of ErbB2/AKT/ERK signaling. J Steroid Biochem Mol Biol. 2010;121(1-2):408–12. doi:10.1016/j.jsbmb.2010.03.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. García-Quiroz J, García-Becerra R, Santos-Martínez N, et al. In vivo dual targeting of the oncogenic Ether-à-go-go-1 potassium channel by calcitriol and astemizole results in enhanced antineoplastic effects in breast tumors. BMC Cancer. 2014;14:745. doi:10.1186/1471-2407-14-745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. So JY, Lee HJ, Smolarek AK, et al. A novel Gemini vitamin D analog represses the expression of a stem cell marker CD44 in breast cancer. Mol Pharmacol. 2011;79(3):360–7. doi:10.1124/mol.110.068403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. So JY, Smolarek AK, Salerno DM, et al. Targeting CD44-STAT3 signaling by Gemini vitamin D analog leads to inhibition of invasion in basal-like breast cancer. PLoS One. 2013;8(1), e54020. doi:10.1371/journal.pone.0054020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Maund SL, Shi L, Cramer SD. A role for interleukin-1 alpha in the 1,25 dihydroxyvitamin D3 response in mammary epithelial cells. PLoS One. 2013;8(11), e81367. doi:10.1371/journal.pone.0081367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Milani C, Katayama ML, de Lyra EC, et al. Transcriptional effects of 1,25 dihydroxyvitamin D(3) physiological and supra-physiological concentrations in breast cancer organotypic culture. BMC Cancer. 2013;13:119. doi:10.1186/1471-2407-13-119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Matthews D, LaPorta E, Zinser GM, et al. Genomic vitamin D signaling in breast cancer: Insights from animal models and human cells. J Steroid Biochem Mol Biol. 2010;121(1-2):362–7. doi:10.1016/j.jsbmb.2010.03.061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Berkovich L, Sintov AC, Ben-Shabat S. Inhibition of cancer growth and induction of apoptosis by BGP-13 and BGP-15, new calcipotriene-derived vitamin D3 analogs, in-vitro and in-vivo studies. Invest New Drugs. 2013;31(2):247–55. doi:10.1007/s10637-012-9839-1.

    Article  PubMed  Google Scholar 

  135. Jensen SS, Madsen MW, Lukas J, et al. Inhibitory effects of 1alpha,25-dihydroxyvitamin D(3) on the G(1)-S phase-controlling machinery. Mol Endocrinol. 2001;15(8):1370–80.

    CAS  PubMed  Google Scholar 

  136. Pickholtz I, Saadyan S, Keshet GI, et al. Cooperation between BRCA1 and vitamin D is critical for histone acetylation of the p21waf1 promoter and growth inhibition of breast cancer cells and cancer stem-like cells. Oncotarget. 2014;5(23):11827–46.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Swami S, Krishnan AV, Wang JY, et al. Inhibitory effects of calcitriol on the growth of MCF-7 breast cancer xenografts in nude mice: selective modulation of aromatase expression in vivo. Horm Cancer. 2011;2(3):190–202. doi:10.1007/s12672-011-0073-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wahler J, So JY, Kim YC, et al. Inhibition of the transition of ductal carcinoma in situ to invasive ductal carcinoma by a Gemini vitamin D analog. Cancer Prev Res (Phila). 2014;7(6):617–26. doi:10.1158/1940-6207.CAPR-13-0362.

    Article  CAS  Google Scholar 

  139. Zhang Y, Guo Q, Zhang Z, et al. VDR status arbitrates the prometastatic effects of tumor-associated macrophages. Mol Cancer Res. 2014;12(8):1181–91. doi:10.1158/1541-7786.MCR-14-0036.

    Article  CAS  PubMed  Google Scholar 

  140. Berger U, McClelland RA, Wilson P, et al. Immunocytochemical determination of estrogen receptor, progesterone receptor, and 1,25-dihydroxyvitamin D3 receptor in breast cancer and relationship to prognosis. Cancer Res. 1991;51(1):239–44.

    CAS  PubMed  Google Scholar 

  141. John EM, Schwartz GG, Dreon DM, Koo J. Vitamin D and breast cancer risk: the NHANES I Epidemiologic follow-up study, 1971-1975 to 1992. National Health and Nutrition Examination Survey. Cancer Epidemiol Biomarkers Prev. 1999;8(5):399–406.

    CAS  PubMed  Google Scholar 

  142. Bertone-Johnson ER, Chen WY, Holick MF, et al. Plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1991–7.

    Article  CAS  PubMed  Google Scholar 

  143. Crew KD, Gammon MD, Steck SE, et al. Association between plasma 25-hydroxyvitamin D and breast cancer risk. Cancer Prev Res (Phila). 2009;2(6):598–604. doi:10.1158/1940-6207.CAPR-08-0138.

    Article  CAS  Google Scholar 

  144. Engel P, Fagherazzi G, Boutten A, et al. Serum 25(OH) vitamin D and risk of breast cancer: a nested case-control study from the French E3N cohort. Cancer Epidemiol Biomarkers Prev. 2010;19(9):2341–50. doi:10.1158/1055-9965.EPI-10-0264.

    Article  CAS  PubMed  Google Scholar 

  145. Abbas S, Chang-Claude J, Linseisen J. Plasma 25-hydroxyvitamin D and premenopausal breast cancer risk in a German case-control study. Int J Cancer. 2009;124(1):250–5. doi:10.1002/ijc.23904.

    Article  CAS  PubMed  Google Scholar 

  146. Abbas S, Linseisen J, Slanger T, et al. Serum 25-hydroxyvitamin D and risk of post-menopausal breast cancer--results of a large case-control study. Carcinogenesis. 2008;29(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  147. Saliba W, Barnett-Griness O, Rennert G. The relationship between obesity and the increase in serum 25(OH)D levels in response to vitamin D supplementation. Osteoporos Int. 2013;24(4):1447–54. doi:10.1007/s00198-012-2129-0.

    Article  CAS  PubMed  Google Scholar 

  148. Manson JE, Mayne ST, Clinton SK. Vitamin D and prevention of cancer--ready for prime time? N Engl J Med. 2011;364(15):1385–7. doi:10.1056/NEJMp1102022.

    Article  CAS  PubMed  Google Scholar 

  149. Chlebowski RT, Johnson KC, Kooperberg C, et al. Calcium plus vitamin D supplementation and the risk of breast cancer. J Natl Cancer Inst. 2008;100(22):1581–91. doi:10.1093/jnci/djn360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cauley JA, Chlebowski RT, Wactawski-Wende J, et al. Calcium plus vitamin D supplementation and health outcomes five years after active intervention ended: the Women’s Health Initiative. J Womens Health (Larchmt). 2013;22(11):915–29. doi:10.1089/jwh.2013.4270.

    Article  Google Scholar 

  151. Neuhouser ML, Manson JE, Millen A, et al. The influence of health and lifestyle characteristics on the relation of serum 25-hydroxyvitamin D with risk of colorectal and breast cancer in postmenopausal women. Am J Epidemiol. 2012;175(7):673–84. doi:10.1093/aje/kwr350.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Skaaby T, Husemoen LL, Thuesen BH, et al. Prospective population-based study of the association between serum 25-hydroxyvitamin-D levels and the incidence of specific types of cancer. Cancer Epidemiol Biomarkers Prev. 2014;23(7):1220–9. doi:10.1158/1055-9965.EPI-14-0007.

    Article  CAS  PubMed  Google Scholar 

  153. McCullough ML, Stevens VL, Patel R, et al. Serum 25-hydroxyvitamin D concentrations and postmenopausal breast cancer risk: a nested case control study in the Cancer Prevention Study-II Nutrition Cohort. Breast Cancer Res. 2009;11(4):R64. doi:10.1186/bcr2356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Almquist M, Bondeson AG, Bondeson L, et al. Serum levels of vitamin D, PTH and calcium and breast cancer risk-a prospective nested case-control study. Int J Cancer. 2010;127(9):2159–68. doi:10.1002/ijc.25215.

    Article  CAS  PubMed  Google Scholar 

  155. Amir E, Cecchini RS, Ganz PA, et al. 25-Hydroxy vitamin-D, obesity, and associated variables as predictors of breast cancer risk and tamoxifen benefit in NSABP-P1. Breast Cancer Res Treat. 2012;133(3):1077–88. doi:10.1007/s10549-012-2012-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Scarmo S, Afanasyeva Y, Lenner P, et al. Circulating levels of 25-hydroxyvitamin D and risk of breast cancer: a nested case-control study. Breast Cancer Res. 2013;15(1):R15. doi:10.1186/bcr3390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Eliassen AH, Spiegelman D, Hollis BW, et al. Plasma 25-hydroxyvitamin D and risk of breast cancer in the Nurses’ Health Study II. Breast Cancer Res. 2011;13(3):R50. doi:10.1186/bcr2880.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Wang J, Eliassen AH, Spiegelman D, et al. Plasma free 25-hydroxyvitamin D, vitamin D binding protein, and risk of breast cancer in the Nurses’ Health Study II. Cancer Causes Control. 2014;25(7):819–27. doi:10.1007/s10552-014-0383-5.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Mondul AM, Shui IM, Yu K, et al. Vitamin D-associated genetic variation and risk of breast cancer in the Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol Biomarkers Prev. 2014;pii: cebp.1127.

    Google Scholar 

  160. Beer TM, Munar M, Henner WD. A Phase I trial of pulse calcitriol in patients with refractory malignancies: pulse dosing permits substantial dose escalation. Cancer. 2001;91(12):2431–9.

    Article  CAS  PubMed  Google Scholar 

  161. Peng X, Hawthorne M, Vaishnav A, et al. 25-Hydroxyvitamin D3 is a natural chemopreventive agent against carcinogen induced precancerous lesions in mouse mammary gland organ culture. Breast Cancer Res Treat. 2009;113(1):31–41. doi:10.1007/s10549-008-9900-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Gronich M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gronich, N., Rennert, G. (2016). Risk-Reducing (Chemopreventive) Agents in Breast Cancer Prevention. In: Russo, J. (eds) Trends in Breast Cancer Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-27135-4_8

Download citation

Publish with us

Policies and ethics