Skip to main content

Non-covalent Modification of Double-Stranded DNA at the Mismatch and Bulged Site

  • Chapter
  • First Online:
  • 1262 Accesses

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 31))

Abstract

Advances in synthetic chemistry of DNA allow us to create DNAs with chemical modifications that endow unnatural properties and functions. There is another way for chemical modification: non-covalent modification with DNA-binding molecule. Instead of the covalently introduced functionalities, DNA is modified by non-covalent binding of small molecules bearing desired functionalities. We have developed synthetic ligands that selectively bind to mismatched base pair and unpaired bulge in double-stranded DNA, which is requisite for delivering the functions at a particular location of DNA. This chapter describes the non-covalent modification of target DNA by our mismatch- and bulge-binding ligands bearing various functionalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dervan PB (2001) Molecular recognition of DNA by small molecules. Bioorg Med Chem 9:2215–2235

    Article  CAS  PubMed  Google Scholar 

  2. Sugiyama H, Bando T (2006) Synthesis and biological properties of sequence-specific DNA-alkylating pyrrole-imidazole polyamides. Acc Chem Res 39:935–944

    Article  PubMed  Google Scholar 

  3. Tse WC, Boger DL (2004) Sequence-selective DNA recognition: natural products and nature’s lessons. Chem Biol 11:1607–1617

    Article  CAS  PubMed  Google Scholar 

  4. Mapp AK, Ansari AZ, Ptashne M, Dervan PB (2000) Activation of gene expression by small molecule transcription factors. Proc Natl Acad Sci USA 97:3930–3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kwonj Y, Arndt HD, Qian M, Choi Y, Kawazoe Y, Dervan PB, Uesugi M (2004) Small molecule transcription factor mimic. J Am Chem Soc 126:15940–15941

    Article  Google Scholar 

  6. Ilyinsky NS, Varizhuk AM, Beniaminov AD, Puzanov MA, Shchyolkina AK, Kaluzhny DN (2014) G-quadruplex ligands: mechanisms of anticancer action and target binding. Mol Biol 48:778–794

    Article  CAS  Google Scholar 

  7. Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10:261–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Georgiades SN, Abd Karim NH, Suntharalingam K, Vilar R (2010) Interaction of metal complexes with G-quadruplex DNA. Angew Chem Int Ed Engl 49:4020–4034

    Article  CAS  PubMed  Google Scholar 

  9. Shin-Ya K, Wierzba K, Matsuo K, Ohtani T, Yamada Y, Furihata K, Hayakawa Y, Seto H (2001) Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J Am Chem Soc 123:1262–1263

    Article  CAS  PubMed  Google Scholar 

  10. Nakatani K (2009) Recognition of mismatched base pairs in DNA. Bull Chem Soc Jpn 82:1055–1069

    Article  CAS  Google Scholar 

  11. Nakatani K, Sando S, Saito I (2000) Recognition of a single guanine bulge by 2-acylamino-1,8-naphthyridine. J Am Chem Soc 122:2172–2177

    Article  CAS  Google Scholar 

  12. Murray TJ, Zimmerman SC (1995) 7-amido-1,8-naphthyridines as hydrogen-bonding units for the complexation of guanine derivatives—the role of 2-alkoxyl groups in decreasing binding-affinity. Tetrahedron Lett 36:7627–7630

    Article  CAS  Google Scholar 

  13. Nakatani K, Sando S, Saito I (2001) Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance. Nat Biotechnol 19:51–55

    Article  CAS  PubMed  Google Scholar 

  14. Peng T, Murase T, Goto Y, Kobori A, Nakatani K (2005) A new ligand binding to G-G mismatch having improved thermal and alkaline stability. Bioorg Med Chem Lett 15:259–262

    Article  CAS  PubMed  Google Scholar 

  15. Nakatani K, Hagihara S, Goto Y, Kobori A, Hagihara M, Hayashi G, Kyo M, Nomura M, Mishima M, Kojima C (2005) Small-molecule ligand induces nucleotide flipping in (CAG)(n) trinucleotide repeats. Nat Chem Biol 1:39–43

    Article  CAS  PubMed  Google Scholar 

  16. Peng T, Nakatani K (2005) Binding of naphthyridine carbamate dimer to the (CGG)(n) repeat results in the disruption of the G-C base pairing. Angew Chem Int Ed Engl 44:7280–7283

    Article  CAS  PubMed  Google Scholar 

  17. Wilson WD, Ratmeyer L, Zhao M, Strekowski L, Boykin D (1993) The search for structure-specific nucleic-acid interactive drugs—effects of compound structure on Rna versus DNA interaction strength. Biochemistry 32:4098–4104

    Article  CAS  PubMed  Google Scholar 

  18. Pilch DS, Poklar N, Gelfand CA, Law SM, Breslauer KJ, Baird EE, Dervan PB (1996) Binding of a hairpin polyamide in the minor groove of DNA: sequence-specific enthalpic discrimination. Proc Natl Acad Sci USA 93:8306–8311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peng T, Dohno C, Nakatani K (2006) Mismatch-binding ligands function as a molecular glue for DNA. Angew Chem Int Ed Engl 45:5623–5626

    Article  CAS  PubMed  Google Scholar 

  20. Dohno C, Nakatani K (2011) Control of DNA hybridization by photoswitchable molecular glue. Chem Soc Rev 40:5718–5729

    Article  CAS  PubMed  Google Scholar 

  21. Winfree E, Liu FR, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544

    Article  CAS  PubMed  Google Scholar 

  22. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  PubMed  Google Scholar 

  23. Endo M, Sugiyama H (2009) Chemical approaches to DNA nanotechnology. ChemBioChem 10:2420–2443

    Article  CAS  PubMed  Google Scholar 

  24. Zhang F, Nangreave J, Liu Y, Yan H (2014) Structural DNA nanotechnology: state of the art and future perspective. J Am Chem Soc 136:11198–11211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Linko V, Dietz H (2013) The enabled state of DNA nanotechnology. Curr Opin Biotechnol 24:555–561

    Article  CAS  PubMed  Google Scholar 

  26. Jones MR, Seeman NC, Mirkin CA (2015) Nanomaterials. Programmable materials and the nature of the DNA bond. Science 347:1260901

    Article  PubMed  Google Scholar 

  27. Goodman RP, Schaap IAT, Tardin CF, Erben CM, Berry RM, Schmidt CF, Turberfield AJ (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661–1665

    Article  CAS  PubMed  Google Scholar 

  28. Dohno C, Atsumi H, Nakatani K (2011) Ligand inducible assembly of a DNA tetrahedron. Chem Commun 47:3499–3501

    Article  CAS  Google Scholar 

  29. Cohen JD, Sadowski JP, Dervan PB (2007) Addressing single molecules on DNA nanostructures. Angew Chem Int Ed Engl 46:7956–7959

    Article  CAS  PubMed  Google Scholar 

  30. Cohen JD, Sadowski JP, Dervan PB (2008) Programming multiple protein patterns on a single DNA nanostructure. J Am Chem Soc 130:402

    Article  CAS  PubMed  Google Scholar 

  31. Atsumi H, Nakazawa S, Dohno C, Sato K, Takui T, Nakatani K (2013) Ligand-induced electron spin-assembly on a DNA tile. Chem Commun 49:6370–6372

    Article  CAS  Google Scholar 

  32. Atsumi H, Maekawa K, Nakazawa S, Shiomi D, Sato K, Kitagawa M, Takui T, Nakatani K (2010) Noncovalent assembly of TEMPO radicals pair-wise embedded on a DNA duplex. Chem Lett 39:556–557

    Article  CAS  Google Scholar 

  33. Maekawa K, Nakazawa S, Atsumi H, Shiomi D, Sato K, Kitagawa M, Takui T, Nakatani K (2010) Programmed assembly of organic radicals on DNA. Chem Commun 46:1247–1249

    Article  CAS  Google Scholar 

  34. Atsumi H, Maekawa K, Nakazawa S, Shiomi D, Sato K, Kitagawa M, Takui T, Nakatani K (2012) Tandem arrays of TEMPO and nitronyl nitroxide radicals with designed arrangements on DNA. Chem Eur J 18:178–183

    Article  CAS  PubMed  Google Scholar 

  35. Miller TR, Alley SC, Reese AW, Solomon MS, Mccallister WV, Mailer C, Robinson BH, Hopkins PB (1995) A probe for sequence-dependent nucleic-acid dynamics. J Am Chem Soc 117:9377–9378

    Article  CAS  Google Scholar 

  36. Barhate N, Cekan P, Massey AP, Sigurdsson ST (2007) A nucleoside that contains a rigid nitroxide spin label: a fluorophore in disguise. Angew Chem Int Ed Engl 46:2655–2658

    Article  CAS  PubMed  Google Scholar 

  37. Cekan P, Smith AL, Barhate N, Robinson BH, Sigurdsson ST (2008) Rigid spin-labeled nucleoside C: a nonperturbing EPR probe of nucleic acid conformation. Nucleic Acids Res 36:5946–5954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shelke SA, Sigurdsson ST (2010) Noncovalent and site-directed spin labeling of nucleic acids. Angew Chem Int Ed Engl 49:7984–7986

    Article  CAS  PubMed  Google Scholar 

  39. Langenegger SM, Häner R (2004) Excimer formation by interstrand stacked pyrenes. Chem Commun 2792–2793

    Google Scholar 

  40. Uno S, Dohno C, Bittermann H, Malinovskii VL, Häner R, Nakatani K (2009) A light-driven supramolecular optical switch. Angew Chem Int Ed Engl 48:7362–7365

    Article  CAS  PubMed  Google Scholar 

  41. Peng T, Dohno C, Nakatani K (2007) Bidirectional control of gold nanoparticle assembly by turning on and off DNA hybridization with thermally degradable molecular glue. ChemBioChem 8:483–485

    Article  CAS  PubMed  Google Scholar 

  42. Asanuma H, Ito T, Yoshida T, Liang XG, Komiyama M (1999) Photoregulation of the formation and dissociation of a DNA duplex by using the cis-trans isomerization of azobenzene. Angew Chem Int Ed Engl 38:2393–2395

    Article  CAS  PubMed  Google Scholar 

  43. Dohno C, Uno SN, Nakatani K (2007) Photoswitchable molecular glue for DNA. J Am Chem Soc 129:11898–11899

    Article  CAS  PubMed  Google Scholar 

  44. Dohno C, Uno SN, Sakai S, Oku M, Nakatani K (2009) The effect of linker length on binding affinity of a photoswitchable molecular glue for DNA. Bioorg Med Chem 17:2536–2543

    Article  CAS  PubMed  Google Scholar 

  45. Dohno C, Yamamoto T, Nakatani K (2009) Photoswitchable unsymmetrical ligand for DNA hetero-mismatches. Eur J Org Chem 4051–4058

    Google Scholar 

  46. Suda H, Kobori A, Zhang JH, Hayashi G, Nakatani K (2005) N, N′-Bis(3-aminopropyl)-2,7-diamino-1,8-naphthyridine stabilized a single pyrimidine bulge in duplex DNA. Bioorg Med Chem 13:4507–4512

    Article  CAS  PubMed  Google Scholar 

  47. Takei F, Igarashi M, Hagihara M, Oka Y, Soya Y, Nakatani K (2009) Secondary-structure-inducible ligand fluorescence coupled with PCR. Angew Chem Int Ed Engl 48:7822–7824

    Article  CAS  PubMed  Google Scholar 

  48. Takei F, Nakatani K (2013) The chemistry of PCR primers: concept and application. Isr J Chem 53:401–416

    Article  CAS  Google Scholar 

  49. Erlich HA, Gelfand D, Sninsky JJ (1991) Recent advances in the polymerase chain-reaction. Science 252:1643–1651

    Article  CAS  PubMed  Google Scholar 

  50. Papp AC, Pinsonneault JK, Cooke G, Sadee W (2003) Single nucleotide polymorphism genotyping using allele-specific PCR and fluorescence melting curves. Biotechniques 34:1068–1072

    CAS  PubMed  Google Scholar 

  51. Takei F, Chen X, Yu G, Shibata T, Dohno C, Nakatani K (2014) Cytosine-bulge-dependent fluorescence quenching for the real-time hairpin primer PCR. Chem Commun 50:15195–15198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Nakatani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dohno, C., Nakatani, K. (2016). Non-covalent Modification of Double-Stranded DNA at the Mismatch and Bulged Site. In: Nakatani, K., Tor, Y. (eds) Modified Nucleic Acids. Nucleic Acids and Molecular Biology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-27111-8_9

Download citation

Publish with us

Policies and ethics