Emerging Invaders from the Cultivated Croplands: An Invasion Perspective

  • Neha Goyal
  • Gyan Prakash SharmaEmail author
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 10)


Understanding potential sources and pathways of colonization by alien plant propagules in novel environments is crucial for assessing invasion risks posed by aggressive colonizers. With the enormous expansion and intensification of agriculture, cultivated croplands are emerging as potent sources of robust weeds and/or invaders. Ongoing increase in adaptability and evolutionary potential of agricultural systems demands our understanding to better evaluate the invasion risks to heterogeneous environments. The review intends to collate the fine ecological overlap of crops and associated plants with the plant invaders. We begin with an overview of plant invasion process and discuss invasion risks posed by cultivated croplands through putative propagule escape from crops, crop-associated weeds, and feral crop descendants, continuing with a subsequent discussion on their fate. The synthesis concludes with promising prospects for research which may generate better insights on putative invasion risks from croplands.


Colonizer Cropland Crop improvement Invasion risk Propagule 



Authors thank Dr. V.R. Rajpal and Prof. S.N. Raina for the invitation to write this chapter. GPS acknowledges funding from University of Delhi and Department of Science and Technology, India. NG acknowledges Senior Research Fellowship (SRF) support from University Grants Commission, India. Constructive suggestions by Prof. A.S. Raghubanshi, Banaras Hindu University are duly acknowledged.


  1. Achten W, Verchot L, Franken Y (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32:1063–1084CrossRefGoogle Scholar
  2. Adkins SW, Sowerby MS (1996) Allelopathic potential of the weed Parthenium hysterophorus L. in Australia. Plant Prot Q 11:20–23Google Scholar
  3. Anderson NO, Galatowitsch SM, Gomez N (2006) Selection strategies to reduce invasive po-tential in introduced plants. Euphytica 148:203–216CrossRefGoogle Scholar
  4. Andersson MS, de Vicente MC (2010) Gene flow between crops and their wild relatives. Johns Hopkins University Press, BaltimoreGoogle Scholar
  5. Anjani K (2012) Castor genetic resources: a primary gene pool for exploitation. Ind Crops Prod 35:1–14CrossRefGoogle Scholar
  6. Annapurna C, Singh JS (2003a) Variation of Parthenium hysterophorus in response to soil quality: implications for invasiveness. Weed Res 43:190–198Google Scholar
  7. Annapurna C, Singh JS (2003b) Phenotypic plasticity and plant invasiveness: case study of congress grass. Curr Sci 85:197–201Google Scholar
  8. Antonovics J (1968) Evolution in closely adjacent plant populations V. Evolution of self-fertility. Heredity 23:219–238CrossRefGoogle Scholar
  9. Antonovics J (1992) Toward community genetics. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens: ecology, evolution, and genetics. University of Chicago Press, Chicago, pp 426–449Google Scholar
  10. Ayal S, Levy AA (2005) Wheat domestication and de-domestication–What are the odds? In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, Boca Raton, pp 167–173Google Scholar
  11. Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The Genetics of Colonizing Species. Academic Press, New York, pp 147–168Google Scholar
  12. Barney JN, DiTomaso JM (2008) Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58:64–70CrossRefGoogle Scholar
  13. Barrett SH (1983) Crop mimicry in weeds. Econ Bot 37:255–282CrossRefGoogle Scholar
  14. Barrett SCH (1989) Waterweed invasions. Sci Am 260:90–97CrossRefGoogle Scholar
  15. Barrett SCH, Husband BC (1990) Genetics of plant migration and colonization. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant Population Genetics. Breeding and Genetic Resources, Sinauer Associates, Massachusetts, pp 254–277Google Scholar
  16. Bazzaz FA (1986) Life history of colonizing plants: some demographic, genetic and physiological features. In: Mooney HA, Drake JS (eds) Ecology of biological invasions of North America and Hawaii. Springer, New York, pp 96–110CrossRefGoogle Scholar
  17. Bennett MD, Leitch IJ, Hanson L (1998) DNA amounts in two samples of angiosperm weeds. Ann Bot 82:121–134CrossRefGoogle Scholar
  18. Binggeli P (1996) A taxonomic, biogeographical and ecological overview of invasive woody plants. J Veg Sci 7:121–124CrossRefGoogle Scholar
  19. Blackburn TM, Pyšek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339PubMedCrossRefGoogle Scholar
  20. Bosbach K, Hurka H (1981) Biosystematic studies on Capsella bursa-pastoris (Brassicaceae): enzyme polymorphism in natural populations. Plant Syst Evol 137:73–94CrossRefGoogle Scholar
  21. Buddenhagen CE, Chimera C, Clifford P (2009) Assessing biofuel crop invasiveness: a case study. PLoS ONE 4(4):e5261PubMedPubMedCentralCrossRefGoogle Scholar
  22. Burger JC, Lee S, Ellstrand NC (2006) Origin and genetic structure of feral rye in the western United States. Mol Ecol 15:2527–2539PubMedCrossRefGoogle Scholar
  23. Burger JC, Holt JS, Ellstrand NC (2007) Rapid phenotypic divergence of feral rye from domesticated cereal rye. Weed Sci 55:204–271CrossRefGoogle Scholar
  24. Campbell LG, Snow AA (2007) Competition alters life history and increases the relative fecundity of crop-wild radish hybrids (Raphanus spp.). New Phytol 173:648–660PubMedCrossRefGoogle Scholar
  25. Cao Q, Lu BR, Xia H et al (2006) Genetic diversity and origin of weedy rice (Oryza sativa f. spontanea) populations found in North-eastern China revealed by simple sequence repeat (SSR) markers. Ann Bot 98:1241–1252PubMedPubMedCentralCrossRefGoogle Scholar
  26. Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78–82CrossRefGoogle Scholar
  27. Chapman MA, Burke JM (2006) Radishes gone wild. Heredity 97:379–380PubMedCrossRefGoogle Scholar
  28. Chen GQ, Guo SL, Yin LP (2010) Applying DNA C-values to evaluate invasiveness of angiosperms: validity and limitation. Biol Invasions 12:1335–1348CrossRefGoogle Scholar
  29. Clements DR, DiTommaso A, Jordan N et al (2004) Adaptability of plants invading North American cropland. Agric Ecosyst Environ 104(3):379–398CrossRefGoogle Scholar
  30. Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–558PubMedCrossRefGoogle Scholar
  31. Crawley MJ, Harvey PH, Purvis A (1996) Comparative ecology of the native and alien floras of the British Isles. Philos Trans R Soc Lond B Biol Sci 351:1251–1259CrossRefGoogle Scholar
  32. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534CrossRefGoogle Scholar
  33. de Wet JMJ (1995) Finger millet. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman, Harlow, pp 137–140Google Scholar
  34. de Wet JMJ, Harlan JR (1975) Weeds and domesticates: evolution in the man-made habitat. Econ Bot 29:99–107CrossRefGoogle Scholar
  35. de Wet JMJ, Prasada Rao KE, Brink DE et al (1984) Systematics and evolution of Eleusine coracana (Gramineae). Am J Bot 71:550–557CrossRefGoogle Scholar
  36. Dehnen-Schmutz K, Touza J, Perrings C et al (2007a) The horticultural trade and ornamental plant invasions in Britain. Conserv Biol 21:224–231Google Scholar
  37. Dehnen-Schmutz K, Touza J, Perrings C et al (2007b) A century of the ornamental plant trade and its impacts on invasion success. Divers Distrib 13:527–534Google Scholar
  38. DiTomaso JM, Barney JN, Fox A (2007) Biofuel feedstocks: the risk of future invasions. Council for Agricultural Science and Technology Commentary, QTA2007-1Google Scholar
  39. DiTomaso JM, Reaser JK, Dionigi CP et al (2010) Biofuel vs bioinvasion: seeding policy priorities. Environ Sci Technol 44:6906–6910PubMedCrossRefGoogle Scholar
  40. Dlugosch KM, Parker IM (2008) Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecol Lett 11(7):701–709PubMedCrossRefGoogle Scholar
  41. Driscoll DA, Catford JA, Barney JN et al (2014) New pasture plants intensify invasive species risk. Proc Natl Acad Sci USA 111:16622–16627PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ehara K, Abe S (1950) Classification of the forms of Japanese barnyard millet. Proc Crop Sci Soc Jpn 20:245–246CrossRefGoogle Scholar
  43. Ellstrand NC (2001) When transgenes wander, should we worry? Plant Physiol 125:1543–1545PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Evol Syst 30:536–539Google Scholar
  46. Ellstrand NC, Heredia SM, Leak-Garcia JA et al (2010) Crops gone wild: evolution of weeds and invasives from domesticated ancestors. Evol Appl 3:494–504PubMedPubMedCentralCrossRefGoogle Scholar
  47. Esler KJ, Prozesky H, Sharma GP et al (2010) How wide is the “knowing-doing” gap in invasion biology? Biol Invasions 12:4065–4075CrossRefGoogle Scholar
  48. Falk-Peterson J, Bøhn T, Sandlund OD (2006) On the numerous concepts in invasion biology. Biol Invasions 8:1409–1424CrossRefGoogle Scholar
  49. Flory SL, Lorentz KA, Gordon DR et al (2012) Experimental approaches for evaluating the invasion risk of biofuel crops. Environ Res Lett 7(4):045904CrossRefGoogle Scholar
  50. Foxcroft LC, Richardson DM, Wilson JRU (2008) Ornamental plants as invasive aliens: prob-lems and solutions in Kruger National Park, South Africa. Environ Manage 41:32–51PubMedCrossRefGoogle Scholar
  51. Frost HG (1923) Heterosis and dominance of size factors in Raphanus. Genetics 8:116–153PubMedPubMedCentralGoogle Scholar
  52. Gentle CB, Duggin JA (1997) Allelopathy as a competitive strategy in persistent thickets of Lantana camara L. in three Australian forest communities. Plant Ecol 132:85–95CrossRefGoogle Scholar
  53. GISP (2008) Biofuels run the risk of becoming invasive species. The Global Invasive Species Programme.
  54. GISP (2010) The IAS problem. The Global Invasive Species Programme.
  55. Goel U, Saxena DB, Kumar B (1989) Comparative study of allelopathy as exhibited by Prosopis juliflora swartz and Prosopis cineraria (L) Druce. J Chem Ecol 15:591–600PubMedCrossRefGoogle Scholar
  56. Gordon DR, Tancig KJ, Onderdonk DA et al (2011) Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian Weed Risk Assessment. Biomass Bioenerg 35:74–79CrossRefGoogle Scholar
  57. Gould F (1991) The evolutionary potential of crop pests. Am Sci 79:496–507Google Scholar
  58. Goyal N, Sharma GP (2015) Lantana camara L. (sensu lato): an enigmatic complex. NeoBiota 25:15–26CrossRefGoogle Scholar
  59. Goyal N, Pardha-Saradhi P, Sharma GP (2014) Can adaptive modulation of traits to urban environments facilitate Ricinus communis L. invasiveness? Environ Monit Assess 186:7941–7948PubMedCrossRefGoogle Scholar
  60. Green RE (1997) The influence of numbers released on the outcome of attempts to introduce exotic bird species to New Zealand. J Anim Ecol 66:25–35CrossRefGoogle Scholar
  61. Gressel J (2005) Introduction—the challenges of ferality. In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, Boca Raton, pp 1–7CrossRefGoogle Scholar
  62. Gurevitch J, Fox GA, Wardle GM et al (2011) Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol Lett 14(4):407–418PubMedCrossRefGoogle Scholar
  63. Hegde SG, Nason JD, Clegg J et al (2006) The evolution of California’s wild radish has resulted in the extinction of its progenitors. Evolution 60:1187–1197PubMedCrossRefGoogle Scholar
  64. Hilu K, de Wet JMJ, Seigler D (1978) Flavonoid patterns and systematics in Eleusine. Biochem Syst Ecol 6:247–249CrossRefGoogle Scholar
  65. Holm L, Doll J, Holm E, Pancho J, Herberger J (1997) World weeds: natural histories and distribution. Wiley, New YorkGoogle Scholar
  66. Hooftman DAP, De Jong MJ, Oostermeijer JGB et al (2007) Modelling the long-term consequences of crop-wild relative hybridization: a case study using four generations of hybrids. J Appl Ecol 44:1035–1045CrossRefGoogle Scholar
  67. Hovick SM, Campbell LG, Snow AA et al (2012) Hybridization alters early life-history traits and increases plant colonization success in a novel region. Am Nat 179:192–203PubMedCrossRefGoogle Scholar
  68. Ishikawa R, Toki N, Imai K et al (2005) Origin of weedy rice grown in Bhutan and the force of genetic diversity. Genet Resour Crop Ev 52(4):395–403CrossRefGoogle Scholar
  69. Jordan NR, Jannink JL (1997) Assessing the practical importance of weed evolution: a research agenda. Weed Res 37:237–246CrossRefGoogle Scholar
  70. Kalwij JM, Robertson MP, van Rensburg BJ (2008) Human activity facilitates altitudinal expansion of exotic plants along a road in montane grassland, South Africa. Appl Veg Sci 11:491–498CrossRefGoogle Scholar
  71. Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76CrossRefGoogle Scholar
  72. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204PubMedCrossRefGoogle Scholar
  73. Kowarik I (2003) Human agency in biological invasions: secondary releases foster naturalisation and population expansion of alien plant species. Biol Invasions 5:293–312Google Scholar
  74. Kowarik I (2005) Urban ornamentals escaped from cultivation. In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, Boca Raton, pp 97–121CrossRefGoogle Scholar
  75. Kubešová M, Moravcová L, Suda J et al (2010) Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82:81–96Google Scholar
  76. Kuester A, Conner JK, Culley T et al (2014) How weeds emerge: a taxonomic and trait-based examination using United States data. New Phytol 202:1055–1068PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lake JC, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Cons 117:215–226CrossRefGoogle Scholar
  78. Leiss KA, Müller-Schärer H (2001) Adaptation of Senecio vulgaris (Asteraceae) to ruderal and agricultural habitats. Am J Bot 88:1593–1599PubMedCrossRefGoogle Scholar
  79. Levine JM, D’Antonio CM (2003) Forecasting biological invasions with increasing international trade. Conserv Biol 17:322–326CrossRefGoogle Scholar
  80. Lloyd DG (1992) Self- and cross-fertilization in plants. II. The selection of self-fertilization. Int J Plant Sci 153:370–380CrossRefGoogle Scholar
  81. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228PubMedCrossRefGoogle Scholar
  82. Londo JP, Schaal BA (2007) Origins and population genetics of weedy red rice in the USA. Mol Ecol 16:4523–4535PubMedCrossRefGoogle Scholar
  83. Lonsdale WM (1994) Inviting trouble: introduced pasture species in Northern Australia. Aust J Ecol 19:345–354CrossRefGoogle Scholar
  84. Low T, Booth C, Council I (2007) The weedy truth about biofuels. In: Invasive Species Council, Melbourne, Australia, p 46Google Scholar
  85. Mack RN (1996) Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biol Conserv 78:107–121CrossRefGoogle Scholar
  86. Mack RN (2000) Cultivation fosters plant naturalization by reducing environmental stochasticity. Biol Invasions 2:111–122CrossRefGoogle Scholar
  87. Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemology, global consequences and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  88. Maheshwari JK (1965) Alligator weed in Indian lakes. Nature 205:1270CrossRefGoogle Scholar
  89. Mantri A, Annapurna C, Singh JS (2002) Terrestrial plant invasion and global change. In: Tripathi G, Tripathi YC (eds) Bioresource and Environment Campus Book International, New Delhi, p 25–44Google Scholar
  90. Martínez-Ghersa MA, Ghersa CM, Satorre EH (2000) Co-evolution of agricultural systems and their weed companions: implications for research. Field Crop Res 67:181–190CrossRefGoogle Scholar
  91. Martins VF, Guimarães PR, Silva RR (2006) Secondary seed dispersal by ants of Ricinus communis (Euphorbiaceae) in the Atlantic forest in Southeastern Brazil: influence on seed germination. Sociobiology 47:265–274Google Scholar
  92. Martins VF, Guimarães Jr PR, Haddad CRB et al (2009a) The effect of ants on the seed dispersal cycle of the typical myrmecochorous Ricinus communis. Plant Ecol 205:213–222Google Scholar
  93. Martins VF, Haddad CRB, Semir J (2009b) Seed germination of Ricinus communis in predicted settings after autochorous and myrmecochorous dispersal. J Torrey Bot Soc 136:84–90Google Scholar
  94. Martins VF, Haddad CRB, Semir J (2011) Responses of the invasive Ricinus communis seedlings to competition and light. N Z J Bot 49:263–279CrossRefGoogle Scholar
  95. Mathews KM (1972) The high altitude ecology of Lantana. Indian For 97:170–171Google Scholar
  96. Mohler CL (2001) Weed evolution and community structure. In: Liebman M, Mohler C, Staver CP (eds) Ecological management of agricultural weeds. Cambridge University Press, Cambridge, pp 444–493CrossRefGoogle Scholar
  97. Mokotjomela TM, Musil CF, Esler KJ (2013) Potential seed dispersal distances of native and non-native fleshy fruiting shrubs in the South African Mediterranean climate region. Plant Ecol 214(9):1127–1137CrossRefGoogle Scholar
  98. Morrell PL, Williams-Coplin TD, Lattu AL et al (2005) Crop-to-weed introgression has impacted allelic composition of johnsongrass populations with and without recent exposure to cultivated sorghum. Mol Ecol 14:2143–2154PubMedCrossRefGoogle Scholar
  99. Mücher T, Hesse P, Pohl-Orf M et al (2000) Characterization of weed beet in Germany and Italy. J Sugar Beet Res 37:19–38CrossRefGoogle Scholar
  100. Mulligan GA, Findlay JN (1970) Reproductive systems and colonization in Canadian weeds. Can J Bot 48:859–860CrossRefGoogle Scholar
  101. Negussie A, Achten WM, Aerts R et al (2013) Invasiveness risk of the tropical biofuel crop Jatropha curcas L. into adjacent land use systems: from the rumors to the experimental facts. Glob Change Biol Bioenergy 5(4):419–430Google Scholar
  102. Negussie A, Nacro S, Achten WM et al (2015) Insufficient evidence of Jatropha curcas L. invasiveness: experimental observations in Burkina Faso, West Africa. Bioenergy Res 8(2):570 580Google Scholar
  103. Neuhauser C, Andow DA, Heimpel GE et al (2003) Community genetics: Expanding the synthesis of ecology and genetics. Ecology 84:545–558CrossRefGoogle Scholar
  104. Noble IR, Slatyer RO (1980) The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. succession. Springer, Netherlands, pp 5–21CrossRefGoogle Scholar
  105. Noor M, Salam U, Khan MA (1995) Allelopathic effects of Prosopis juliflora Swartz. J Arid Environ 31:83–90CrossRefGoogle Scholar
  106. Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790PubMedCrossRefGoogle Scholar
  107. Pandit MK, White SM, Pocock MJO (2014) The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytol 203:697–703PubMedCrossRefGoogle Scholar
  108. Panetsos CA, Baker HG (1967) The origin of variation in ‘‘wild’’ Raphanus sativus (Cruciferae) in California. Genetica 38:243–274CrossRefGoogle Scholar
  109. Paterson AH, Schertz KF, Lin YR et al (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.). Pers. Proc Natl Acad Sci USA 92:6127–6131PubMedPubMedCentralCrossRefGoogle Scholar
  110. Paynter Q, Csurhes SM, Heard TA et al (2003) Worth the risk? Introduction of legumes can cause more harm than good: an Australian perspective. Aust Syst Bot 16:81–88CrossRefGoogle Scholar
  111. Pieterse AH, Murphy KJ (eds) (1990) Aquatic Weeds. Oxford University Press, OxfordGoogle Scholar
  112. Pimentel D, Lach L, Zuniga R et al (2000) Environmental and economic costs of non-indigenous species in the United States. Bioscience 50(1):53–65CrossRefGoogle Scholar
  113. Pyšek P, Jarošík V, Hulme PE et al (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci USA 107:12157–12162PubMedPubMedCentralCrossRefGoogle Scholar
  114. Pyšek P, Jarošík V, Hulme PE et al (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737CrossRefGoogle Scholar
  115. Raghu S, Davis A (2007) Exotic grasses as biofuels the concerns. Ill Nat Steward 16:30–32Google Scholar
  116. Raghu S, Anderson RC, Daehler CC et al (2006) Adding biofuels to the invasive species fire? Science 313:1742PubMedCrossRefGoogle Scholar
  117. Rai JPN, Tripathi RS (1982) Allelopathy as a factor contributing to dominance of Eupatorium riparium Regel. Indian J Ecol 9:14–20Google Scholar
  118. Rejmánek M (1996) A theory of seed plant invasiveness: the first sketch. Biol Cons 78:171–181CrossRefGoogle Scholar
  119. Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1662CrossRefGoogle Scholar
  120. Ricciardi A (2007) Are modern biological invasions an unprecedented form of global change? Conserv Biol 21:329–336PubMedCrossRefGoogle Scholar
  121. Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12:18–26CrossRefGoogle Scholar
  122. Richardson DM, Blanchard R (2011) Learning from our mistakes: minimizing problems with invasive biofuel plants. Curr Opin Environ Sustain 3:36–42CrossRefGoogle Scholar
  123. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809CrossRefGoogle Scholar
  124. Richardson DM, Pyšek P, Rejmánek M et al (2000a) Naturalization and invasion of alien plants: concept and definitions. Divers Distrib 6:93–107Google Scholar
  125. Richardson DM, Allsopp N, D’Antonio C et al (2000b) Plant invasions—the role of mutualisms. Biol Rev 75:65–93Google Scholar
  126. Ridley CE, Ellstrand NC (2009) Evolution of enhanced reproduction in the hybrid-derived invasive, California wild radish (Raphanus sativus). Biol Invasions 11:2251–2264CrossRefGoogle Scholar
  127. Ridley CE, Ellstrand NC (2010) Rapid evolution of morphology and adaptive life history in the invasive California wild radish (Raphanus sativus) and the implications for management. Evol Appl 3(1):64–76PubMedPubMedCentralCrossRefGoogle Scholar
  128. Ridley CE, Kim SC, Ellstrand NC (2008) Bidirectional history of hybridization in California wild radish, Raphanus sativus (Brassicaceae), as revealed by chloroplast DNA. Am J Bot 95:1437–1442PubMedCrossRefGoogle Scholar
  129. Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Evol Syst 32:305–332CrossRefGoogle Scholar
  130. Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Invasions 11:1093–1105CrossRefGoogle Scholar
  131. Schlaepfer DR, Edwards PJ, Semple JC et al (2008) Cytogeography of Solidago gigantea (Asteraceae) and its invasive ploidy level. J Biogeogr 35(11):2119–2127CrossRefGoogle Scholar
  132. Schlaepfer DR, Edwards PJ, Billeter R (2010) Why only tetraploid Solidago gigantea (Asteraceae) became invasive: a common garden comparison of ploidy levels. Oecologia 163(3):661–673PubMedCrossRefGoogle Scholar
  133. Severino LS, Auld DL, Baldanzi M et al (2012) A review on the challenges for increased production of castor. Agron J 104:853–880CrossRefGoogle Scholar
  134. Sharma GP, Esler KJ (2008) Phenotypic plasticity among Echium plantagineum populations in different habitats of Western Cape, South Africa. S Afr J Bot 74:746–749CrossRefGoogle Scholar
  135. Sharma GP, Singh JS, Raghubanshi AS (2005a) Plant invasions: Emerging trends and future implications. Curr Sci 88:726–734Google Scholar
  136. Sharma GP, Raghubanshi AS, Singh JS (2005b) Lantana invasion: an overview. Weed Biol Manag 5:157–165Google Scholar
  137. Shen D, Sun H, Huang M et al (2013) Comprehensive analysis of expressed sequence tags from cultivated and wild radish (Raphanus spp.). BMC Genom 14(1):721CrossRefGoogle Scholar
  138. Simberloff D, Martin JL, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66PubMedCrossRefGoogle Scholar
  139. Smith LL, Barney JN (2014) The relative risk of invasion: evaluation of Miscanthus × giganteus seed establishment. Invasive Plant Sci Manag 7:93–106CrossRefGoogle Scholar
  140. Snow AA, Campbell LG (2005) Can feral radishes become weeds? In: Gressel J (ed) Crop Ferality and Volunteerism. CRC Press, Boca Raton, pp 193–208CrossRefGoogle Scholar
  141. Stewart CN Jr, Tranel PJ, Horvath DP et al (2009) Evolution of weediness and invasiveness: charting the course for weed genomics. Weed Sci 57:451–462CrossRefGoogle Scholar
  142. Suda J, Meyerson LA, Leitch IJ et al (2015) The hidden side of plant invasions: the role of genome size. New Phytol 205:994–1007PubMedCrossRefGoogle Scholar
  143. Sun Q, Ni Z, Liu Z et al (1998) Genetic relationships and diversity among Tibetan wheat, common wheat and European spelt wheat revealed by RAPD markers. Euphytica 99:205–211CrossRefGoogle Scholar
  144. Suneson CA, Rachie KO, Khush GS (1969) A dynamic population of weedy rye. Crop Sci 9:121–124CrossRefGoogle Scholar
  145. Thompson JN (1999) The evolution of species interactions. Science 284:2116–2118PubMedCrossRefGoogle Scholar
  146. Thompson GD, Bellstedt DU, Byrne M et al (2012) Cultivation shapes genetic novelty in a globally important invader. Mol Ecol 21:3187–3199PubMedCrossRefGoogle Scholar
  147. Tripathi RS, Singh RS, Rai JPN (1981) Allelopathic potential of Eupatorium adenophorum—a dominant ruderal weed of Meghalaya. Proc Indian Natl Sci Acad Part B 47:458–465Google Scholar
  148. Valery L, Fritz H, Lefeuvre JC et al (2008) In search of a real definition of the biological invasion phenomenon itself. Biol Invasions 10:1345–1351CrossRefGoogle Scholar
  149. van Dijk H, den Nijs HCM, Bartsch D, Sweet J (2004) Gene exchange between wild and crop in Beta vulgaris: how easy is hybridization and what will happen in later generations? In: den Nijs HCM, Bartsch D, Sweet J (eds) Introgression from Genetically Modified Plants into Wild Relatives. CABI Publishing, Wallingford, pp 53–61CrossRefGoogle Scholar
  150. Vanaja M, Jyothi M, Ratnakumar P et al (2008). Growth and yield responses of castor bean (Ricinus communis L.) at two enhanced CO2 levels. Plant Soil Environ UZPI (Czech Republic)Google Scholar
  151. Vermeij GJ (1996) An agenda for invasion biology. Biol Conserv 78:3–9CrossRefGoogle Scholar
  152. Vitousek PM, D’Antonio CM, Loope LL et al (1996) Biological invasions as global environmental change. Am Sci 84:468–478Google Scholar
  153. Vitousek PM, Mooney HA, Lubchenco J et al (1997) Human domination of earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  154. Weiher EV, Werf A, Thompson K et al (1999) Challenging theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620CrossRefGoogle Scholar
  155. Weinig C (2000) Plasticity versus canalization: population differences in the timing of shade avoidance responses. Evolution 54:441–445PubMedCrossRefGoogle Scholar
  156. Williamson M (1996) Biological invasions. Chapman and Hall, London, p 244Google Scholar
  157. Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666CrossRefGoogle Scholar
  158. Wilson JRU, Dormontt EE, Prentis PJ et al (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Environmental StudiesUniversity of DelhiDelhiIndia

Personalised recommendations