Advertisement

Origin of Genetic Variability and Improvement of Quinoa (Chenopodium quinoa Willd.)

  • Atul Bhargava
  • Deepak OhriEmail author
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 10)

Abstract

Quinoa is a pseudocereal having a very balanced composition of carbohydrates, fat, and protein. Various studies based on inheritance, molecular cytology, DNA markers, and single locus variability have established it as an allotetraploid (2n = 4x = 36). It has been cultivated for 5 millennia in the Andes where it probably originated from its wild and weedy forms. Domestication process led to loss of many characters disadvantageous to farmers leading to narrowing of the genetic base. However, wide diversity based on plant color, seed color, types of branching and panicles, productivity, abiotic stress tolerance, and disease resistance still exists. This diversity is also reflected at the molecular level and is being used by the plant breeders worldwide to develop improved plant types with respect to uniformity, early maturity, seed yield, protein content, and reduced saponin content in the seeds.

Keywords

Chenopodium quinoa Origin Domestication Genetic variability Improvement 

References

  1. Ahamed NT, Singhal RS, Kulkarni PR, Pal M (1996a) Physicochemical and functional properties of Chenopodium quinoa starch. Carbohydr Polym 31:99–103CrossRefGoogle Scholar
  2. Ahamed NT, Singhal RS, Kulkarni PR, Kale DD, Pal M (1996b) Studies on Chenopodium quinoa and Amaranthus paniculatas starch as biodegradable fillers in LDPE films. Carbohydr Polym 31:157–160CrossRefGoogle Scholar
  3. Anabalon-Rodriguez L, Thomet-Isla M (2009) Comparative analysis of genetic and morphologic diversity among quinoa accessions (Chenopodium quinoa Willd.) of the south of Chile and highland accessions. J Plant Breed Crop Sci 1:210–216Google Scholar
  4. Aubrecht E, Biacs PA (2001) Characterization of buckwheat grain proteins and its products. Acta Aliment 28:261–268Google Scholar
  5. Bazile D, Olguin Manzano PA, Nunez L, Croce P, Alacron G, Lagos J, Parra F, Peredo P, Negrete Sepulveda J (2010) Differencacion territorial asociada a la quinua en el secano costero dela sexta region, Chile:consideraciones sobre las praticas y representaciones socials para un desarrollo sostenible. In: Anales de la Sociedad Chilena de Ciencias Geograficas, pp 103–109Google Scholar
  6. Bazile D, Fuentes F, Mujika A (2013) Historical perspectives and domestication. In: Bhargava A, Srivastava S (eds) Quinoa botany, production and uses. CAB International, Oxfordshire, pp 16–35CrossRefGoogle Scholar
  7. Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Phil Trans Roy Soc Ser B Biol Sci 334:309–345CrossRefGoogle Scholar
  8. Bertero HD, de la Vega AJ, Correa G, Jacobsen SE, Mujica A (2004) Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multienvironment trials. Field Crops Res 89:299–318CrossRefGoogle Scholar
  9. Bhargava A, Srivastava S (2013) Quinoa botany, production and uses. CAB International, OxfordshireCrossRefGoogle Scholar
  10. Bhargava A, Shukla S, Katiyar RS, Ohri D (2003) Selection parameters for genetic improvement in Chenopodium grain on sodic soil. J Appl Hortic 5:45–48Google Scholar
  11. Bhargava A, Rana TS, Shukla S, Ohri D (2005) Seed protein electrophoresis of some cultivated and wild species of Chenopodium (Chenopodiaceae). Biol Plant 49:505–511CrossRefGoogle Scholar
  12. Bhargava A, Shukla S, Ohri D (2006a) Chenopodium quinoa—an Indian perspective. Industrial Cropsand  Products 23:73–87CrossRefGoogle Scholar
  13. Bhargava A, Shukla S, Ohri D (2006b) Karyotypic studies on some cultivated and wild species of Chenopodium (Chenopodiaceae). Genet Res Crop Evol 53:1309–1320CrossRefGoogle Scholar
  14. Bhargava A, Shukla S, Ohri D (2007a) Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium Willd.). Field Crops Res 101:104–116CrossRefGoogle Scholar
  15. Bhargava A, Shukla S, Ohri D (2007b) Genome size variation in some cultivated and wild species of Chenopodium (Chenopodiaceae). Caryologia 60:245–250CrossRefGoogle Scholar
  16. Bhargava A, Shukla S, Ohri D (2007c) Gynomonoecy in Chenopodium quinoa Willd. (Chenopodiaceae): variation in inflorescence and floral types in some accessions. Biologia 62:19–23CrossRefGoogle Scholar
  17. Bhargava A, Shukla S, Ohri D (2007d) Evaluation of foliage yield and leaf quality traits in Chenopodium spp. in multiyear trials. Euphytica 153:99–213Google Scholar
  18. Bhargava A, Shukla S, Rajan S, Ohri D (2007e) Genetic diversity for morphological and quality traits in quinoa (Chenopodium quinoa Willd.) germplasm. Genet Res Crop Evol 54:167–173CrossRefGoogle Scholar
  19. Brown DC, Cepeda-Cornejo V, Maughan PJ, Jellen EN (2014) Characterization of the Granule bound starch synthase I gene in Chenopodium. The Plant Genome doi: 10.3835/plantgenome2014.09.0051 Google Scholar
  20. Carlsson R (1980) Quantity and quality of leaf protein concentrates from Atriplex hortensis L. Chenopodium quinoa Willd. and Amaranthus caudatus L. grown in southern Sweden. Acta Agriculturae Scand 30:418–426CrossRefGoogle Scholar
  21. Catacora AG (1977) Determinacion de cariotipoen cinco lineas de quinua (Chenopodium quinoa Willd). Ingeniero Agronomo thesis, Universidad Nacionel Technica del Altiplano, Puno, PeruGoogle Scholar
  22. Chauhan GS, Eskin NAM, Tkachuk R (1992) Nutrients and antinutrients in quinoa seeds. Creal Chem 69:85–88Google Scholar
  23. Christensen SA, Pratt DB, Stevens MR, Jellen EN, Coleman CE, Fairbanks DJ, Bonifacio A, Maughan PJ (2007) Assessment of biodiversity in the USDA and CIP-FAO international nusery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet Resour 5:82–95CrossRefGoogle Scholar
  24. Coles ND, Coleman CE, Christensen SA, Jellen EN, Stevens MR, Bonifacio A, Rojas-Beltran JA, Fairbanks DJ, Maughan PJ (2005) Development and use of an expressed sequence tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci 168:539–447Google Scholar
  25. Coulter L, Lorenz K (1990) Quinoa-composition, nutritional value, food applications. LWT-Food Sci Technol 23:203–207Google Scholar
  26. Cusack D (1984) Quinoa: grain of the Incas. Ecologist 14:21–31Google Scholar
  27. Del Castillo C,Winkel T, Mahy G, Bizoux JP (2007) Genetic structure of quinoa (Chenopodium quinoa Willd.) from the Bolivian altiplano as revealed by RAPD markers. Genet Res Crop Evol 54:897–905Google Scholar
  28. Dostalek J (1987) Influence of the mode of pollination on offsprings of some species of the genus Chenopodium. Preslia 59:263–269Google Scholar
  29. Drezewiecki J, Delgado-Licon E, Haruenkit R, Pawelzik E, Martin-Belloso O, Park YS (2003) Identification and differences of total proteins and their soluble fractions in some pseudocereals based on electrophoretic patterns. J Agric Food Chem 51:7798–7804CrossRefGoogle Scholar
  30. Eberhart SA, Russel WA (1966) Stability parameters for comparing varieties. Crop Sci 6(1):36–40Google Scholar
  31. Escuredo O, Inmaculada GMM, Moncada GW, Fischer S, Hierro JMH (2014) Amino acid profile of the quinoa (Chenopodium quinoa Willd.) using near infrared spectroscopy and chemometric techniques. J. Cereal Sci (in press)Google Scholar
  32. Espinola G, Gandarillas H (1985) Study of correlated characters and their effects on quinoa yield. Bol Genetico 13:47–54Google Scholar
  33. Fairbanks D, Waldrigues A, Ruas CF, Maughan PJ, Robison LR, Adersen WR, Riede CR, Pauley CS, Caeteno LG, Arantes OM, Fungaro MHP, Vidotto MC, Jankevicius SE (1993) Efficient characterization of biological diversity using field DNA extraction and random amplified polymorphic DNA markers. Rev Bras Genet 16:11–22Google Scholar
  34. Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant breeding programme. Aust J Agric Res 14:742–754CrossRefGoogle Scholar
  35. Fleming JE, Galway NW (1995) Quinoa (Chenopodium quinoa Willd.). In: Williams JT (ed) Cereals and Pseudocereals. Chapman and Hall, London, pp 2–83Google Scholar
  36. Fuentes F, Bhargava A (2011) Morphological analysis of quinoa germplasm grown under low land desert conditions. J Agron Crop Sci 197:124–137CrossRefGoogle Scholar
  37. Fuentes F, Martinez EA, Hinrichson PV, Jellen EN, Maughan PJ (2009) Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplas using multiplex fluorescent microsatellite markers. Conserv Genet 10:369–377CrossRefGoogle Scholar
  38. Fuentes F, Bazile D, Bhargava A, Martinez EA (2012) Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J Agric Sci 150:702–716CrossRefGoogle Scholar
  39. Galwey NW (1993) The potential of quinoa as a multipurpose crop for agricultural diversification: a review. Ind Crops Prod 1:101–106CrossRefGoogle Scholar
  40. Galwey NW (1995) Quinoa and relatives. In: Smartt J, Simmonds NW (eds) Quinoa and relatives. Longman Scientific and Technical, Essex, EnglandGoogle Scholar
  41. Galwey NW, Leakey CLA, Price KR, Fenwick GR (1990) Chemical composition and nutritional characteristics of quinoa (Chenopodium quinoa Willd.). Food Sci Nutr 42F:245–261Google Scholar
  42. Gandarillas H (1969) Esterilidadgenetica y citoplasmica en la quinoa. Turrialba 19:429–430Google Scholar
  43. Gandarillas H (1979) Botanica. Quinua y kaniwa. Cultivos Andinos. In: Tapia ME (ed) Serie Libros y Materiales Educativos. Instituto Interamericano de Ciencias Agricolas, Bogota, Colombia, pp 20–44Google Scholar
  44. Gęsiński K (2000) Potential for Chenopodium quinoa Willd acclimatisation in Poland. Crop development of the cool and wet regions of Europe. European Communities, BelgiumGoogle Scholar
  45. Giusti L (1970) El genero Chenopodium en Argentina 1: Numeros de cromosomas. Darwiniana 16:98–105Google Scholar
  46. Gorinstein S, Pawelzik E, Gelgado-Licon E, Haruenkit R, Weisz M, Trakhtenberg S (2002) Characterization of pseudocereal and cereal proteins by protein and amino acid analysis. J Sci Food Agric 82:886–891CrossRefGoogle Scholar
  47. Haaber J (1991) Chenopodium quinoa Willd. As a green crop for the palleting industry-the effect of heat treatment on the palatability in green pallets made of quinoa. First European symposium on industrial crops and products, Maastricht, The NetherlandsGoogle Scholar
  48. Heiser CB, Nelson DC (1974) On the origin of cultivated chenopods (Chenopodium). Genetica 78:503–505Google Scholar
  49. Hirich A, Choukr-Allah R, Jacobsen SE (2014) Deficit irrigation and organic compost improve growth and yield of quinoa and pea. J Agron Crop Sci 200:390–398CrossRefGoogle Scholar
  50. IAEA (International Atomic Energy Agency) (2004) Genetic improvement of under-utilized and neglected crops in low income food deficit countries through irradiation and related techniques. In: Proceedings of a final research coordination meeting organized by the joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Pretoria, South Africa, May 19–23, 2003Google Scholar
  51. Iliadis C, Karyotis T, Mitsimponas T (1997) Research on quinoa (Chenopodium quinoa) and amaranth (Amaranthus caudatus) in Greece. In: Ortiz R, Stolen O (eds) Crop development for the cool and wet regions of Europe. Spelt and Quinoa COST 814, pp 85–91Google Scholar
  52. Jacobsen SE (1997) Adaptation of quinoa (Chenopodium quinoa) to northern European agriculture: studies on developmental pattern. Euphytica 96:41–48CrossRefGoogle Scholar
  53. Jacobsen SE (1998) Developmental stability of quinoa under European conditions. Ind Crops Prod 7:169–174Google Scholar
  54. Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177CrossRefGoogle Scholar
  55. Jacobsen SE, Stolen O (1993) Quinoa: morphology, phenology and prospects for its production as a new crop in Europe. Eur J Agron 2:19–29CrossRefGoogle Scholar
  56. Jacobsen SE, Jorgensen I, Stolen O (1994) Cultivation of quinoa (Chenopodium quinoa) under temperate climatic conditions in Denmark. J Agric Sci 122:47–52CrossRefGoogle Scholar
  57. Jacobsen SE, Hill J, Stolen O (1996) stability of quantitative traits in quinoa (Chenopodium quinoa Willd.). Theor Appl Genet 93:110–116PubMedCrossRefGoogle Scholar
  58. Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19:99–109CrossRefGoogle Scholar
  59. Jacobsen SE, Monteros C, Corcuera LJ, Bravo LA, Christiansen JL, Mujica A (2007) Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur J Agron 26:471–475CrossRefGoogle Scholar
  60. Jarvis DE, Kopp OR, Jellen EN, Mallory MA, Pattee J, Bonifacio A, Coleman CE, Stevens MR, Fairbanks DJ, Maughan PJ (2008) Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J Genet 87:39–51Google Scholar
  61. Jellen EN, Kolano BA, Sederberg MC, Bonifacio A, Maughan PJ (2011) Chenopodium. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, legume crops and forages. Springer, Berlin, pp 35–61CrossRefGoogle Scholar
  62. Kadereit G, Borsch T, Weising K, Freitag H (2003) Phylogeny of Amaranthaceae, Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci 164:959–986CrossRefGoogle Scholar
  63. Kawatani K, Ohno T (1950) Chromosome numbers of genus Chenopodium, I. Japan J Genet 25:177–180CrossRefGoogle Scholar
  64. Kawatani K, Ohno T (1956) Chromosome numbers of genus Chenopodium, II. Japan J Genet 31:15–17CrossRefGoogle Scholar
  65. Kolano B, Pando LG, Maluszynska J (2001) Molecular cytogenetic studies in Chenopodium quinoa and Amaranthus caudatus. Acta Soc Botanicorum Pol 70:85–90Google Scholar
  66. Kolano B, Gardunia BW, Michalska M, Bonifacio D, Fairbanks D, Maughan PJ, Coleman CE, Stevens MR, Jellen EN, Maluszynska J (2011) Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. Genome Genome 54:710–717PubMedCrossRefGoogle Scholar
  67. Kolano B, Siwinska D, Pando LG, Szymanowska-Pulka J, Maluszynska J (2012) Genome size variation in Chenopodium quinoa (Chenopodiaceae). Plant Syst Evol 298:251–255CrossRefGoogle Scholar
  68. Konishi Y, Hirano S, Tsuboi H, Wada C (2004) Distribution of minerals in quinoa (Chenopodium quinoa Willd) seeds. Biosci Biotech Biochem 68:231–234CrossRefGoogle Scholar
  69. Koziol M (1992) Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J Food Compos Anal 5:35–68CrossRefGoogle Scholar
  70. Kumpun S, Maria A, Crouzet S, Evrard-Todeschi N, Girault JP, Lafont R (2011) Ecdysteroids from Chenopodium quinoa Willd., and ancient Andean crop of high nutritional value. Food Chem 125:1226–1234CrossRefGoogle Scholar
  71. Lescano RJL (1980) Avances en la genetic de quinoa. In: Primera Reunion de Genetica y Fitomejoramiento de la quinoa. Universidad Nacional Tecnica del Altiplano, Instituto Boliviano de Tecnologia Agropecuaria, Instituto Interamericano de Ciencias Agricolas, Centro Internacional de Investigaciones para el Desarrollo, Puno,Peru, pp B1–B2Google Scholar
  72. Limburg H, Mastebroek HD (1997) Breeding high yielding lines of Chenopodium quinoa Willd. With saponin free seed. In: Stolen O, Bruhn K, Pithan K, Hill J (eds) Small grain Cereals and Pseudocereals. In: Proceedings of the COST 814 workshop, 22–24 Feb 1996, Copenhagen, Denmark, pp 103–114Google Scholar
  73. Lindeboom N (2005) Studies on the characterization, biosynthesis and isolation of starch and protein from quinoa (Chenopodium quinoa Willd.), University of Saskatchewan Degree of DoctorGoogle Scholar
  74. Lindhout P, Danial D (2006) Participatory genomics in quinoa. Tailor Biotechnol 2:31–50Google Scholar
  75. Mason SL, Stevens MR, Jellen EN, Bonifacio A, Fairbanks DJ, McCarty RR, Rasmussen AG, Maughan PJ (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci 45:1618–1630CrossRefGoogle Scholar
  76. Mastebroek HD, Limburg H (1997) Breedng for harvest security in Chenopodium quinoa. In: Stolen O, Bruhn K, Pithan K, Hill J (eds) Small grain cereals and pseudocereals. In: Proceedings of the COST 814 Workshop. 22–24 February 1996, Copenhagen, Denmark, pp 79–86Google Scholar
  77. Mastebroek HD, van Soest LJM (1994) Gierstmelde blijkt multi-purpose-gewas (Chenopodium quinoa proves multipurpose crop). Prophyta 1:15–17Google Scholar
  78. Mastebroek HD, van Loo EN, Dolstra O (2002) Combining ability for seed yield traits of Chenopodium quinoa breeding lines. Euphytica 125:427–432CrossRefGoogle Scholar
  79. Maughan PJ, Bonofacio A, Jellen EN, Stevens MR, Coleman CE, Ricks M, Mason SL, Jarvis DE, Gardunia BW, Fairbanks DJ (2004) A genetic linkage map of quinoa (Chenopodium quinoa) base on AFLP, RAPD and SSR markers. Theor Appl Genet 109:118–1195Google Scholar
  80. Maughan PJ, Kolano BA, Maluszynska J, Coles ND, Bonofacio A, Rojas J, Coleman CE Stevens MR, Fairbanks DJ, Parkinson SE, Jellen EN (2006) Molecular and cytological characterization of ribosomal DNAs in Chenopodium quinoa and Chenopodium berlandieri. Genome 49:825–839Google Scholar
  81. Maughan PJ, Turner TB, Coleman CE, Elzinga DB, Jellen EN, Morales JA, Udall JA, Fairbanks DJ, Bonofacio A (2009) Characterization of salt overly sensitive (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.). Genome 52:647–657PubMedCrossRefGoogle Scholar
  82. Maughan PJ, Smith S, Rojas-Beltran J, Elzinga D, Raney J, Jellen E, Bonofacio A, Udall J, Fairbanks D (2012) Single nucleotide polymorphisms identifications, characterization and linkage mapping in Chenopodium quinoa. Plant Genome 5:1–7CrossRefGoogle Scholar
  83. Medina W, Janiak A, Szarejko I, Mujika A, Jacobsen SE (2004) Analisis de relaciones geneticas entre variedads de quinua (Chenopodium quinoa Willd.) utilizando la tecnica de AFLP (amplified fragment length polymorphism). In: Libro de Resumenes XI Congresso Internacional de cultivos andinos. Cochabamba, BoliviaGoogle Scholar
  84. Mujica A (2004) La Quinoa Indigena, caracteristicas e historia. In: Sepulveda J, Thomat MI, Palazuelos F, Mujica A (eds) La kinwa mapuche, Recupracion de un cultivo para la Alimentacion. Fundacion para la Innovacion Agraria, Ministerio de Agricultura Temuco, Chile, pp 22–42, Crop relatives: genomic and breeding resources, legume crops and forages. Springer, Heidelberg, pp 35–61Google Scholar
  85. Mujica A, Jacobsen SE, Ezquierdo J, Marathee JP (2001) Resultados de la Prueba Americana y Europes de la Quinua. CIP, FAO, UNA-Puno, p 51Google Scholar
  86. Mujica A, Chura E, Ruiz E, Martinez R (2010a) Mecanismos de resistencia a sequia de la quina (Chenopodium quinoa Willd.). In: Proceedings Primer Congresso Peruano de Majoramiento Genetico de Plantas y Biotecnologia Agricola, 17–19 May. UNALM, EPG, Lima, Peru, pp 111–114Google Scholar
  87. Mujica A, Chura E, Ruiz E, Rossel J, Pocco M (2010b) Mecanismos de resitencia a sales y seleccion de variedades de quinua (Chenopodium quinoa Willd.) resistates a salinidad. In: Anales XII Congraso Nacional de las Ciencias del Suelo y V Congresso Internacional de las Ciencias del Suelo, Arequipa, Peru, 11–15 Oct 2010, pp 187–189Google Scholar
  88. Munir H, Sehar S, Basra SMA, Jacobsen HJ, Rauf S (2012) Growing quinoa in Pakistan as a potential alternative for food security. In: Resilience of agricultural systems against crises, 19–21 Sept 2012, Göttingen-Kassel/Witzenhausen, GermanyGoogle Scholar
  89. Nelson DC (1968) Taxonomy and origins of Chenopodium quinoa and Chenopodium nuttalliae. Ph.D. thesis, University of Indiana, Bloomington, IndianaGoogle Scholar
  90. Nisimba RY, Kikuzaki H, Konishi Y (2008) Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. Seeds Food Chem 106:760–766CrossRefGoogle Scholar
  91. Nunez Carrasco L, Bazile D, Chia E, Hocde H, Negrete Sapulveda J, Martinez EA (2010) Representaciones socials acerca de la conservacion de la biodiversidad en el caso de peroductores tradicionales de Chenopodium quinoa Willd de secano costero en las regionses de O’Higgins y el Maule. Anales de la Sociedad Chilena de Ciencias Geograficas, pp 181–187Google Scholar
  92. Ochoa J, Peralta E (1988) Evaluacion preliminary morfologica y agronomica de 153 entradas de quinua en Santa Catalina. Pichincha. Actas del VI Congreso Internacional sobre Cultivos Andinos. Quito, Ecuador, pp 137–142Google Scholar
  93. Oritz R, Ruiz-Tapia EN, Mujica-Sanchez A (1998) Sampling strategy for a core collection of Peruvian quinoa germplasm. Theor Appl Genet 96:475–483CrossRefGoogle Scholar
  94. Oritz R, madsen S, Ruiz-Tapia EN, Jacobsen SE, Mujica-Sanchez A, Christiansen JL, Stolen O (1999) Validating a core collection of Peruvian quinoa germplasm. Genet Res Crop Evol 46:285–290Google Scholar
  95. Palomino GH, Segura MD, Bye RB, Mercado RP (1990) Cytogenetic distinction between Teloxys and Chenopodium (Chenopodiaceae). Soutwestern Nat 35:351–353CrossRefGoogle Scholar
  96. Palomino GH, Hernandez LT, Torres EC (2008) Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp nuttalliae. Euphytica 164:221–230CrossRefGoogle Scholar
  97. Pratt C (2003) AFLP analysis of genetic diversity in the USDA Chenopodium quinoa collection. M.S. Thesis, Brigham Young University, Provo, UT, USAGoogle Scholar
  98. Rana TS, Narzary D, Ohri D (2010) Genetic diversity and relationships among some wild and cultivated species of Chenopodium L. (Amaranthaceae) using RAPD and DAMD methods. Curr Sci 98:840–846Google Scholar
  99. Rea J (1969) Biologia floral de la quinoa (Chenopodium quinoa). Turrialba 19:91–96Google Scholar
  100. Rep-Carrasco R, Espinoza C, Jacobsen SE (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule). Food Rev Int 19:179–189CrossRefGoogle Scholar
  101. Reynolds DJ (2009) Genetic dissection of triterpenoid saponin production in Chenopodium quinoa using microarray analysis. M.Sc. thesis, Brigham Young University, Provo, UtahGoogle Scholar
  102. Risi J, Galway NW (1984) The chenopodium grains of the Andes: Inca crops for modern agriculture. Adv Appl Biol 10:145–216Google Scholar
  103. Risi J, Galwey NW (1989) Chenopodium grains of the Andes: a crop for the temperate latitudes. In: Wickens GE, Haq N, Day P (eds) New crops for food and industry. Chapman and Hall, New YorkGoogle Scholar
  104. Risi J, Galwey NW (1991) Genotype x environment interaction in the Andean grain crop quinoa (Chenopodium quinoa) in temperate environments. Plant Breed 107:141–147CrossRefGoogle Scholar
  105. Rodriguez LA, Isla MT (2009) Comparative analysis of genetic and morphologic diversity among quinoa accessions (Chenopodium quinoa Willd.) of the south of Chile and highland accessions. J Plant Breed Crop Sci 1:210–216Google Scholar
  106. Rojas W (1998) Análisis de la diversidad genética del germoplasma de quinua (Chenopodium quinoa Willd.) de Bolivia, mediante métodos multivariados. Tesis M.Sc., Universidad Austral de Chile, Facultad de Ciencias Agrarias. Valdivia—Chile, 209 pGoogle Scholar
  107. Rojas W (2003) Multivariate analysis of genetic diversity of Bolivian quinoa germplasm. Food Rev Int 19:9–23CrossRefGoogle Scholar
  108. Ruales J, Nair BM (1992) Nutritional quality of protein in quinoa (Chenopodium quinoa Willd.) seeds. Plant Foods Hum Nutr 42:1–11PubMedCrossRefGoogle Scholar
  109. Ruas PM, Bonifacio A, Ruas CF, Fairbanks DJ, Anderson WR (1999) Genetic relationships among 19 accessions of six species of Chenopodium L. by random amplified polymorphic DNA fragments (RAPD). Euphytica 105:25–32CrossRefGoogle Scholar
  110. Ruiz-Carrasco K, Antognoni F, Coulibali AK, Lizardi S, Covarrubias A, Martinez EA, Molina-Montenegro MA, Biondi S, Zurita-Silva A (2011) Variation in salinity tolerance of four low land genotypes of quinoa (Chenopodium quinoa Willd) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem 49:1333–1341PubMedCrossRefGoogle Scholar
  111. Shafii B, Price WJ (1998) Analysis of genotype-by-environment interaction using the additive main effects and multiplicative interaction model and stability estimates. J Agric Biol Environ Stat 3:335–345Google Scholar
  112. Schlick G, Bubenheim DL (1996) Quinoa- candidate crop for NASA’s controlled ecological life support systems. In: Janick J (ed) Progress in new crops. ASHS Press, ArlingtonGoogle Scholar
  113. Shams A (2011) Combat degradation in rain fed areas by introducing new drought tolerant crops in Egypt. Int J Water Res Arid Environ 1:318–325Google Scholar
  114. Shukla GK (1972) Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 29:237–245PubMedCrossRefGoogle Scholar
  115. Silvestri V, Gil F (2000) Alogamia en quinoa. Tasa en Mendoza (Argrntina). Revisita de la facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, pp 71–76Google Scholar
  116. Simmonds NW (1971) The breeding system of quinoa. I. Male sterility. Heredity 27:73–82Google Scholar
  117. Spehar CR, Santos RLB (2005) Agronomic performance of quinoa selected in the Brazilian Savannah. Pesquiza Agropecuaria Bras 40:609–612CrossRefGoogle Scholar
  118. Stevens MR, Coleman CE, Parkinson SE, Maughan PJ, Zhang HB, Balzotti MR, Kooyman DL, Arumughanathan K, Bonifacio A, Fairbanks DJ, Jellen EN, Stevens JJ (2006) Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins. Theor Appl Genet 112:1593–1600PubMedCrossRefGoogle Scholar
  119. Stikic R, Glamoclija D, Demin M, Vucelic-Radivic B, Jovanovic Z, Milokovic-Opsenica D et al (2012) Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J Cereal Sci 55:132–138CrossRefGoogle Scholar
  120. Storchova H, Drabesova J, Chab D, Kolar J, Jellen EN (2015) The introns in Flowering locus T-like (FTL) genes are useful markers for tracing paternity in tetraploid Chenopodium quinoa. Genet Res Crop Evol 62:913–925Google Scholar
  121. Suzuka O (1950) Chromosome numbers in pharmaceutical plants I. Seikon Ziho (Rept Kihara Inst Biol Res) 4:57–58Google Scholar
  122. Taboada C, Mamani A, Raes D, Mathijs Erik, García M, Geerts S, Gilles J (2011) Farmers’ willingness to adopt irrigation for quinoa in communities of the Central Altiplano of Bolivia. Revista Latinoamericana de Desarrollo Económico 16:7–28Google Scholar
  123. Tai GCC (1971) Genotypic stability analysis and its application to potato regional trials. Crop Sci 11:184–190Google Scholar
  124. Tanaka R, Tanaka A (1980) Karyomorphological studied on halophytic plants. I. Some taxa of Chenopodium. Caryologia 45:257–269Google Scholar
  125. Tang H, Watanabe K, Mitsunaga T (2002) Characterization of storage starches from quinoa, barley and adzuki seeds. Carbohydr Polym 49:13–22CrossRefGoogle Scholar
  126. Tapia ME (1979) Historia y distribucion geographica. Quinoa y kaniwa. Cultivos Andinos. In: Tapia ME (ed) Serie Libros y Materiales Educativos. Instituto Interamericano de Ciencias Agricolas, Bogota, Colombia, pp 11–15Google Scholar
  127. Tapia M (1982) The environment, crops and agricultural systems in the Andes and Southern Peru, IICAGoogle Scholar
  128. Tapia M, Gandarillas H, Alandia S, Cardozo A, Mujika A, Oritz R, Otazu V, Rea J, Salas B, Zanabria E (1979) La quinoa y la kaniwa. Centro Internacional de Investigaciones para el Desarollo, Instituto Internacional de Ciencias Agricolas, Bogota, ColumbiaGoogle Scholar
  129. Tari T, Annapure U, Singhal R, Kulkarni P (2003) Starch-based spherical aggregates: screening of small granule sized starches for entrapment of a model flavouring compound, vanillin. Carbohydr Polym 53:45–51CrossRefGoogle Scholar
  130. Uotila P (1973) Chromosome counts on Chenopodium L. from SE Europe and SW Asia. Ann Botanici Fenn 10:337–340Google Scholar
  131. Vega-Galvez A, Miranda M, Vergara J, Uribe E, Puente L, Martinez E (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.) an ancient Andean grain: a review. J Sci Food Agric 90:2541–2726PubMedCrossRefGoogle Scholar
  132. Wang S, Tsuchiya T, Wilson HD (1993) Chromosome studies in several species of Chenopodium from North and South America. J Genet Breed 47:163–170Google Scholar
  133. Ward SM (1998) A new source of restorable cytoplasmic male sterility in quinoa. Euphytica 101:157–163CrossRefGoogle Scholar
  134. Ward SM (2000) Allotetraploid segregation for single gene morphological characters in quinoa (Chenopodium quinoa Willd.). Euphytica 116:11–16CrossRefGoogle Scholar
  135. Ward SM, Johnson DL (1993) Cytoplasmic male sterility in quinoa. Euphytica 66:217–223CrossRefGoogle Scholar
  136. Ward SM, Johnson DL (1994) A recessive gene determining male sterility in quinoa. J Hered 85:231–233Google Scholar
  137. Wilson HD (1976) Genetic control and distribution of leucine aminopeptidase in the cultivated chenopods and related weed taxa. Biochem Genet 14:913–919PubMedCrossRefGoogle Scholar
  138. Wilson HD (1980) Artificial hybridization among species of Chenopodium sect. Chenopodium. Syst Bot 5:253–263Google Scholar
  139. Wilson HD (1988) Quinoa biosystematics I: domesticated populations. Econ Bot 42:461–477CrossRefGoogle Scholar
  140. Wilson HD (1990) Quinua and relatives (Chenopodium sect. Chenopodium subsect. Cellulata). Econ Bot 44:92–110Google Scholar
  141. Wilson HD, Heiser CB (1979) The origin and evolutionary relationships of ‘huauzontle’ (Chenopodium nuttalliae Safford), domesticated chenopod of Mexico. Amer J Bot 66:198–206CrossRefGoogle Scholar
  142. Wilson HD, Manhart J (1993) Crop/weed gene flow: Chenopodium quinoa Willd. and C. berlandieri Moq. Theor Appl Genet 86:642–648PubMedCrossRefGoogle Scholar
  143. Wright KH, Pike OA, Fairbanks DJ, Huber SC (2002) Composition of Atriplex hortensis, sweet and bitter Chenopodium quinoa seeds. Food Chem Toxicol 67:1383–1385Google Scholar
  144. Yamashita A, Isobe K, Ishii R (2007) Agronomic studies on quinoa cultivation in Japan. I. Determination of the proper seeding time in the southern Kanto district for good performance of the grain yield. Japan J Crop Sci 76:59–64CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Amity University Uttar Pradesh (Lucknow Campus)LucknowIndia

Personalised recommendations