Arachis Gene Pools and Genetic Improvement in Groundnut

  • Anurudh K. SinghEmail author
  • S. N. Nigam
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 10)


Groundnut (Arachis hypogaea L.) is an important oilseed and food crop in the world. The crop is predominantly grown in low input production systems in developing countries in Asia and Africa. There are several production constraints, both biotic and abiotic, to groundnut. Some of these are global in nature and the others are either regional or local. Four Arachis gene pools contain 80 species, distributed among nine sections are native to five countries of South America. Section Arachis contains tetraploid cultivated groundnut, divided into two subspecies and six botanical varieties and a number of cross-compatible diploid species with rich genetic diversity. International efforts have made significant progress in collection and conservation of these genetic resources, facilitating genetic improvement. Groundnut is an autogamous crop. The pedigree and bulk selection methods are more commonly used by the groundnut breeders. Conventional breeding, including cytogenetic manipulations introgressing genes from cross-compatible wild diploid species has been effective in some areas, while in others it has been tardy due to lack of proper and effective phenotyping tools and limited understanding of the genomics, genetics/inheritance, and underlying mechanisms influencing targeted traits. A greater diversification of parental resources (both cultivated and wild Arachis species) in breeding programs is required to develop new cultivars with diversified genetic backgrounds, which will enable them to perform better under the changing climatic/adverse conditions. Molecular breeding is in infancy. Infrequent and low polymorphisms have restricted the progress in the development and application of genetic maps, except in cases where polymorphic chromosomal regions have been introgressed from diploid wild Arachis species into A. hypogaea. Both conventional and nonconventional crop improvement efforts in groundnut need to concentrate on bridging the yield gap between the potential yield and the realized yield by alleviating major production constraints particularly in rainfed environment.


Arachis hypogaea Arachis gene pool Center of origin/diversity Core collection Genetic improvement Molecular breeding Genetic transformation 



The authors are grateful to Dr. C. E. Simpson, Professor Emeritus, Texas A & M University, Experimental Agricultural Station, Stephenville, USA for sharing literature and information on germplasm holdings and staff of JS Kanwar Library, ICRISAT, India for providing access to literature as and when requested.


  1. Akem CN, Melouk HA, Smith OD (1992) Field evaluation of peanut genotypes for resistance to sclerotinia blight. Crop Prot 11:345–348CrossRefGoogle Scholar
  2. Amin PW, Singh KN, Dwivedi SL, Rao VR (1985) Sources of resistance to jassid (Empoasca kerri Purthi), thrips (Frankliniella shultzei Trybom) and termites (Odontotermes sp.) in groundnut (Arachis hypogaea L.). Peanut Sci 12:58–60CrossRefGoogle Scholar
  3. Anderson WF, Patanothai A, Wynne JC, Gibbons RW (1990) Assessment of a diallel cross for multiple foliar pest resistance in peanut. Olėagineux 45:373–378Google Scholar
  4. Arunyanark A, Pimratch S, Jogloy S, Wongkaew S, Vorasoot N, Akkasaeng C, Kesmala T, Patanothai A, Holbrook CC (2012) Association between aflatoxin contamination and N2 fixation in peanut under drought conditions. Int J Plant Prod 6:161–172Google Scholar
  5. Asif MA, Zafar Y, Iqbal J, Iqbal MM, Rashid U, Ali GM, Arif A, Nazir F (2011) Enhanced expression of AtNHX1 in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerance. Mol Biotechnol 49:250–256PubMedCrossRefGoogle Scholar
  6. Bag S, Singh RS, Jain RK (2007) Agrobacterium-mediated transformation of groundnut with coat protein gene of Tobacco streak virus. Ind J Virol 18:65–69Google Scholar
  7. Bandyopadhyay A, Nautiyal PC, Radhakrishnan T, Gor HK (1999) Role of testa, cotyledon and embryonic axis in seed dormancy of groundnut (Arachis hypogaea L). J Agron Crop Sci 182:37–41CrossRefGoogle Scholar
  8. Banjara M, Zhu LF, Shen GX, Payton P, Zhang H (2012) Expression of an Arabidopsis sodium/ proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotechnol Rep 6:59–67CrossRefGoogle Scholar
  9. Banks DJ (1976) Peanuts: germplasm resources. Crop Sci 16:499–502CrossRefGoogle Scholar
  10. Bera SK, Kasundra SV, Kamdar JH, Ajay BC, Lal C, Thirumalasamy PP, Dash P, Maurya K (2014) Variable response of interspecific breeding lines of groundnut to Sclerotium rolfsii infection under field and laboratory conditions. Electron J Plant Breed 5:22–29Google Scholar
  11. Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of At DREB 1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082PubMedCrossRefGoogle Scholar
  12. Bhatnagar-Mathur P, Rao JS, Vadez V, Dumbala SR, Rathore A, Yamaguchi-Shinozaki K, Sharma KK (2014) Transgenic peanut over expressing the DREB1A transcription factor has higher yields under drought stress. Mol Breed 33:327–340CrossRefGoogle Scholar
  13. Bhatnagar-Panwar M, Bhatnagar-Mathur P, Bhaaskarla VV, Dumbala SR, Sharma KK (2013) Rapid, accurate and routine HPLC method for large-scale screening of pro-vitamin A carotenoids in oilseeds. J Biochem Biotechnol. doi: 10.1007/s13562-013-0239-1 Google Scholar
  14. Brown AHD (1989) The case of core collection. In: Brown AHD et al. (eds) The use of plant genetic resources. Cambridge University Press, Cambridge, pp 135–156Google Scholar
  15. Bucher E, Sijen T, De Haan P, Goldbach R, Prins M (2003) Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J Virol 77:1329–1336PubMedPubMedCentralCrossRefGoogle Scholar
  16. Buiel AAM (1996) Quantitative resistance to peanut bud necrosis tospovirus in groundnut. Ph D dissertation, Wageningen Agricultural University, The NetherlandsGoogle Scholar
  17. Burow MD, Simpson CE, Faries MW, Starr JL, Paterson AH (2009) Molecular biogeographic study of recently described A- and B-genome Arachis species, also providing new insights into the origin of cultivated peanut. Genome 52:107–119PubMedCrossRefGoogle Scholar
  18. Burow MD, Simpson CE, Paterson AH, Starr JL (1996) Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] resistance. Mol Breed 2:369–379CrossRefGoogle Scholar
  19. Chamberlin Chenault Kelly D, Melouk Hassan A, Payton Mark E (2010) Evaluation of the U.S. peanut mini core collection using a molecular marker for resistance to Sclerotinia minor Jagger. Euphytica 172:109–115CrossRefGoogle Scholar
  20. Chen CY, Barkley Noelle A, Wang Ming L, Holbrook Corley C, Dang Phat M (2013a) Registration of purified accessions for the US peanut mini-core germplasm collection. J Plant Regis 8(1):77–85CrossRefGoogle Scholar
  21. Chen CY, Nuti RC, Rowland DL, Faircloth WH, Lamb MC, Harvey E (2013b) Heritability and genetic relationships for drought-related traits in peanut. Crop Sci 53:1392–1402CrossRefGoogle Scholar
  22. Chenault KD, Maas A (2005) Identification of a simple sequence repeat (SSR) marker in cultivated peanut (Arachis hypogaea L.) potentially associated with sclerotinia blight resistance. Proc Am Peanut Res Educ Soc Inc 37:24-25Google Scholar
  23. Chenault KD, Melouk HA, Payton ME (2005) Field reaction to sclerotinia blight among transgenic peanut lines containing antifungal genes. Crop Sci 45:511–515CrossRefGoogle Scholar
  24. Chenault KD, Payton ME (2003) Genetic transformation of runner-type peanut with the nucleocapsid gene of tomato spotted wilt virus. Peanut Sci 30:112–115CrossRefGoogle Scholar
  25. Choi K, Burow MD, Church G, Paterson AH, Simpson CE, Starr JL (1999) Genetics and mechanisms of resistance to Meloidogyne arenaria in peanut germplasm. J Nematol 31:283–290PubMedPubMedCentralGoogle Scholar
  26. Chu Y, Faustinelli P, Ramos ML, Hajduch M, Thelen JJ, Maleki SJ, Ozias-Akins P (2008) Reduction of IgE binding and non-Procmotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h2 and Ara h6 in peanut. J Agric Food Chem 56:11225–11233PubMedCrossRefGoogle Scholar
  27. Chu Y, Holbrook CC, Ozias-Akins P (2009) Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Sci 49:2029–2036CrossRefGoogle Scholar
  28. Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G, Ozias-Akins (2011) Marker-assisted selection to pyramid nematode resistance and high oleic trait in peanut. Plant Genome 4:110–117Google Scholar
  29. Craufurd PQ, Prasad PVV, Kakani VG, Wheeler TR, Nigam SN (2003) Heat tolerance in groundnut. Field Crops Res 80:63–77CrossRefGoogle Scholar
  30. Culbreath AK, Beute MK, Campbell CL (1991) Spatial and temporal aspects of epidemics of Cylindrocladium black rot resistant and susceptible peanut genotypes. Phytopathology 81:144–150CrossRefGoogle Scholar
  31. Culbreath AK, Gorbet DW, Martinez-Ochoa N, Holbrook CC, Todd JW, Isleib TG, Tillman BL (2005) High levels of field resistance to tomato spotted wilt virus in peanut breeding lines derived from hypogaea and hirsuta botanical varieties. Peanut Sci 32:20–24CrossRefGoogle Scholar
  32. Culbreath AK, Todd JW, Brown SL (2003) Epidemiology and management of tomato spotted wilt in peanut. Annu Rev Phytopathol 41:53–75PubMedCrossRefGoogle Scholar
  33. Culver JN, Sherwood JL, Melouk HA (1987) Resistance to Peanut Stripe Virus in Arachis germplasm. Plant Dis 71:1080–1082CrossRefGoogle Scholar
  34. Dawson WO (1996) Gene silencing and virus resistance: a common mechanism. Trends Plant Sci 1:107–108CrossRefGoogle Scholar
  35. De Berchoux C (1960) La rosette l’arachide en Haute-Volta. Comportement des lignes resistantes. Olėagineux 15:229–233Google Scholar
  36. Devi MJ, Bhatnagar-Mathur P, Sharma KK, Serraj R, Anwar SY, Vadez V (2011) Relationships between transpiration efficiency and its surrogate traits in rd29A: DREB 1Atransgenic lines of groundnut. J Agron Crop Sci 197:271–283CrossRefGoogle Scholar
  37. Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM (2008) Alleviating peanut allergy using genetic engineering: The silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergencity. Plant Biotechnol J 6:135–145PubMedCrossRefGoogle Scholar
  38. Dubard M (1906) De l’origine de l’Arachide. Mus. Nat. d’His. Naturelle, Paris Bull 5:340–344Google Scholar
  39. Dwivedi SL, Amin PW, Rasheedunisa Nigam SN, Nagabhushanam GVS, Rao VR, Gibbons RW (1986) Genetic analysis of trichome characters associated with resistance to jassid (Empoasca kerri Pruthi) in peanut. Peanut Sci 13:15–18CrossRefGoogle Scholar
  40. Dwivedi SL, Crouch JH, Nigam SN, Ferguson ME, Paterson AH (2003) Molecular breeding of groundnut for enhanced productivity and food security in the semi-arid tropics: opportunities and challenges. Adv Agron 80:153–221CrossRefGoogle Scholar
  41. Dwivedi SL, Nigam SN, Reddy DVVR, Reddy AS, Ranga Rao GV (1995) Progress in breeding groundnut varieties resistant to peanut bud necrosis virus and its vector. In: Lenne JM (ed) Buiel AAM, Parlevliet JE., Recent studies on peanut bud necrosis disease: Proceedings of a meeting 20 March 1995, ICRISAT Asia Center, Patancheru, AP, India. International Crops Research Institute for the Semi-Arid Tropics; Dept Plant Breed, Wageningen, pp 35–40Google Scholar
  42. Entoori K, Sreevathsa R, Manoj KA, Kumar PA, Kumar ARV, Madhusudhan B, Udayakumar (2008) A chimeric cry1X gene imparts resistance to Spodoptera litura and Helicoverpa armigera in the transgenic groundnut. EurAsian J BioSci 2:53–65Google Scholar
  43. Fernández A, Krapovickas A (1994) Cromosomas y evolución en Arachis (Leguminosae). Bonplandia 8:187–220Google Scholar
  44. Gardner MEB, Stalker HT (1983) Cytology and leafspot resistance of section Arachis amphiploids and their hybrids with Arachis hypogaea. Crop Sci 23:1069–1074CrossRefGoogle Scholar
  45. Gautami B, Foncĕka D, Pandey MK, Moretzsohn MC, Sujay V, Qin H, Hong Y, Faye I, Chen X, Bhanu Prakash A, Shah TM, Gowda MVC, Nigam SN, Liang X, Hoisington DA, Guo A, Bertioli DJ, Jean-Francois Rami, Varshney RK (2012a) An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.). PLoS ONE 7:1–11CrossRefGoogle Scholar
  46. Gautami B, Pandey MK, Vadez V, Nigam SN, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda MVC, Narasu ML, Hoisington DA, Knapp SJ, Varshney RK (2012b) Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30:757–772PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gibbons RW, Bunting AH, Smartt JS (1972) The classification of varieties of groundnut (Arachis hypogaea L.). Euphytica 21:78–85CrossRefGoogle Scholar
  48. Girdthai T, Jogloy S, Vorasoot N, Akkasaeng C, Wongkaew S, Holbrook Patanothai A (2010) Heritability of and genotypic correlations between aflatoxin traits and physiological traits for drought tolerance under end of season drought in peanut (Arachis hypogaea L.). Field Crops Res 118:69–176CrossRefGoogle Scholar
  49. Green CC, Wynne JC, Beute MK (1983) Genetic variability and heritability estimates based on the F2 generation from crosses of large seeded Virginia type peanuts with lines resistant to Cylindrocladium black rot. Peanut Sci 10:47–51CrossRefGoogle Scholar
  50. Gregory MP, Gregory WC (1979) Exotic germplasm of Arachis L.: interspecific hybrids. J Hered 70:185–193Google Scholar
  51. Gregory WC, Gregory MP (1976) Groundnuts. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 151–154Google Scholar
  52. Gregory WC, Gregory MP, Krapovickas A, Smith BW, Yarbrough JA (1973) Structures and genetic resources of peanuts. In: Wilson CT (ed) Peanuts—Culture and uses. Am Peanut Res Educ Assoc Stillwater, OK 3:47–134Google Scholar
  53. Gregory WC, Krapovickas A, Gregory MP (1980) Structure, variation, evolution and classification. In: Summerfield RJ, Bunting AH (eds) Arachis. Advances in legume science, vol 2. Kew, London, pp 469–481Google Scholar
  54. Halward T, Stalker HT, Kochert G (1993) Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87:379–384PubMedCrossRefGoogle Scholar
  55. Hamidou F, Halilou O, Vadez V (2013) Assessment of groundnut under combined heat and drought stress. J Agron Crop Sci 199:1–11CrossRefGoogle Scholar
  56. Hammons RO (1994) The origin and history of Groundnut. In: Smartt J (ed) The groundnut crop. A scientific basis for improvement. Chapman & Hall, London, pp 24–42Google Scholar
  57. Hapsoro D, Aswidinnoor H, Jumanto Suseno R, Sudarsono J (2007) Resistance to peanut stripe virus (PStV) in transgenic peanuts (Arachis hypogaea L.) carrying PStV cp gene was stable up to seven generations of selfing. Biota 12:83–91Google Scholar
  58. Hapsoro D, Aswidinnoor H, Suseno R, Sudarsono J (2005) Agrobacterium-mediated transformation of peanuts (Arachis hypogaea L.) with PStV cp gene. J Trop Agric 10:85–93Google Scholar
  59. Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  60. Haro RJ, Baldessari J, Otegui ME (2013) Genetic improvement of peanut in Argentina between 1948 and 2004: seed yield and its components. Field Crops Res 149:76–86CrossRefGoogle Scholar
  61. Herselman L, Thwaites R, Kimmins FM, Courtois B, van der Merwe PJA, Seal SE (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109:1426–1433PubMedCrossRefGoogle Scholar
  62. Higgins BB (1951) Origin and early history of the peanut. The Peanut- The Unpredictable Legume. Nat Fert Assoc, Washington DC, pp 118–127Google Scholar
  63. Higgins CM, Hall RM, Mitter N, Cruikshank A, Dietzen RG (2004) Peanut stripe potyvirus resistance in peanut (Arachis hypogaea L.) plants carrying viral coat protein gene sequences. Transgenic Res 13:59–67PubMedCrossRefGoogle Scholar
  64. Holbrook CC, Anderson WF, Pittman RN (1993) Selection of a core collection from the U.S. germplasm collection of peanut. Crop Sci 33:859–861CrossRefGoogle Scholar
  65. Holbrook CC, Kvien CK, Ruker KS, Wilson DM, Hook JE, Matheron ME (2000a) Preharvest aflatoxin contamination in drought-tolerant and drought-intolerant peanut genotypes. Peanut Sci 27:45–48CrossRefGoogle Scholar
  66. Holbrook CC, Noe JP (1992) Resistance to the peanut root-knot nematode (Meloidogyne arenaria) in Arachis hypogaea. Peanut Sci 19:35–37CrossRefGoogle Scholar
  67. Holbrook CC, Timper P, Culbreath AK (2003) Resistance to tomato spotted wilt virus and root-knot nematode in peanut interspecific breeding lines. Crop Sci 43:1100–1113CrossRefGoogle Scholar
  68. Holbrook CC, Timper P, Xue HQ (2000b) Evaluation of the core collection approach for identifying resistance to Meloidogyne arenaria in peanut. Crop Sci 40:1172–1175CrossRefGoogle Scholar
  69. Holbrook CC, Wilson DM, Matheron ME, Hunter JE, Knauft DA, Gorbet DW (2000c) Aspergillus colonization and aflatoxin contamination in peanut genotypes with reduced linoleic acid composition. Plant Dis 84:148–150CrossRefGoogle Scholar
  70. Holley RH, Wynne JC, Campbell WV, Isleib TG (1985) Combining ability for insect resistance in peanuts. Olėagineux 40:203–207Google Scholar
  71. Hong Y, Chen Y, Liang X, Liu H, Zhou G, Li S, Wen S, Holbrook CC, Guo B (2010) A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol 10:10–17CrossRefGoogle Scholar
  72. Huang BY, Zhang XY, Miao LJ, Yan Z, Hai Y, Yi ML, Xu J, Chen ZK (2008) RNAi transformation of Ah FAD2 gene and fatty acid analysis of transgenic seeds. Chin J Oil Crop Sci 30:290–293Google Scholar
  73. Huang L, Jiang H, Ren X, Chen Y, Xiao Y, Zhao X Tang M, Huang J, Upadhyaya HD, Liao B (2012) Abundant microsatellite diversity and oil content in wild Arachis species. PLoS ONE 7 (11):e50002Google Scholar
  74. Huang L, Zhao X, Zhang W, Fan Z, Ren X, Liao B, Jiang H, Chen Y (2011) Identification of SSR markers linked to oil content in peanut (Arachis hypogaea L.) through RIL population and natural population. Acta Agron Sinica 37:1967–1974CrossRefGoogle Scholar
  75. Husain F, Mallikarjuna N (2012) Genetic diversity in Bolivian landrace lines of groundnut (Arachis hypogaea L.). Ind J Genet. Plant Breed 72(3):384–389Google Scholar
  76. IBPGR/ICRISAT (1992) Groundnut descriptors. IBPGR Descriptors Series, IBPGR, Rome and ICRISAT, Patancheru, 125 ppGoogle Scholar
  77. Janila P, Nigam SN (2013) Phenotyping for groundnut (Arachis hypogaea L.) improvement. In: Panguluri SK, Kumar AA (eds) Phenotyping for plant breeding: applications of phenotyping methods for crop improvement. Springer Science + Business Media, New York, pp 129–167Google Scholar
  78. Jayalakshmi V, Rajareddy C, Reddy PV, Nageswar Rao RC (1999) Genetic analysis of carbon isotope discrimination and specific leaf area in groundnut (Arachis hypogaea L.). J Oilseeds Res 16:1–5Google Scholar
  79. Jiang H, Ren X, Chen Y, Huang L, Zhou X, Huang J, Froenicke L, Yu J, Guo B, Liao B (2013) Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum. Plant Genet Resour 11(01):77–83CrossRefGoogle Scholar
  80. Jiang H, Ren X, Shou Liao B, Huang J, Chen Y (2007) Establishment of peanut core collection in China. Wuhan Zhiwuxue Yanjiu 25(3):289–293Google Scholar
  81. Jiang H, Ren X, Liao B, Huang J, Lei Y, Chen B, Guo B, Holbrook CC, Upadhyaya HD (2008) Peanut core collection established in China and compared with ICRISAT mini core collection. Acta Agron Sin 34:25–30Google Scholar
  82. Khalfaoui JLB (1991) Inheritance of seed dormancy in a cross between two Spanish peanut cultivars. Peanut Sci 18:65–67CrossRefGoogle Scholar
  83. Khedikar YP, Gowda MVC, Sarvamangala C, Patgar KV, Upadhyaya HD, Varshney RK (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 121:971–984PubMedPubMedCentralCrossRefGoogle Scholar
  84. Knauft DA, Moore KM, Gorbet DW (1993) Further studies on the inheritance of fatty acid composition in peanut. Peanut Sci 20:74–76CrossRefGoogle Scholar
  85. Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570PubMedCrossRefGoogle Scholar
  86. Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopez CR, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291CrossRefGoogle Scholar
  87. Kottapalli KR, Burow MD, Burow G, Burke J, Puppala N (2007) Molecular characterization of the US peanut mini core collection using microsatellite markers. Crop Sci 47(4):1718–1727CrossRefGoogle Scholar
  88. Krapovickas A (1969) The origin, variability and spread of the groundnut (Arachis hypogaea) (English translation by Smartt J) In: Ucko RJ, Dimbledy CW (eds) The domestication and exploitation of plants and animals. Duckworth, London, pp 427–441Google Scholar
  89. Krapovickas A, Rigoni VA (1951) Estudios citológicos en el género Arachis. Revista Invest Agríc 5(3):289–293Google Scholar
  90. Krapovikas A, Gregory WC (1994) Taxonomia del genero Arachis (Leguminosae). Bonplandia VIII:1-187. (In Spanish). (English translation by Williams DE, Simpson CE 2007). Taxonomy of the genus Arachis (Leguminosae). Bonplandia 16 (suppl):1–205Google Scholar
  91. Li ZJ, Jarret RL, Demski JW (1997) Engineered resistance to tomato spotted wilt virus in transgenic peanut expressing the viral nulceocapsid gene. Transgenic Res 6:297–305CrossRefGoogle Scholar
  92. Liang X, Zhou G, Hong Y, Chen X, Liu H, Li S (2009) Overview of research progress on peanut (Arachis hypogaea L.) host resistance to aflatoxin contamination and genomics at the Guangdong Academy of Agricultural Sciences. Peanut Sci 36:29–34CrossRefGoogle Scholar
  93. Liao BS, Li WR, Sun DR (1986) A study on inheritance of resistance to Pseudomonas solanacearum E.F. Smith in Arachis hypogaea L. Oil Crops China 3:1–8Google Scholar
  94. Lopez Y, Smith OD, Senseman SA, Rooney WL (2001) Genetic factors influencing high oleic acid content in Spanish market-type peanut cultivars. Crop Sci 41:51–56CrossRefGoogle Scholar
  95. Lu M, Liang XQ, Dang P, Holbrook CC, Bausher MG, Lee RD, Guo BZ (2005) Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Sci 169:695–703CrossRefGoogle Scholar
  96. Lynch RE (1990) Resistance in peanut to major arthropod pests. Florida Entomologist 73:422–445CrossRefGoogle Scholar
  97. Magbanua ZV, Wilde HD, Roberts JK, Chowdhury K, Abad J, Moyer JW, Wetzstein HY, Parrott WA (2000) Field resistance to tomato spotted wilt virus in transgenic peanut (Arachis hypogaea L.) expressing an antisense nucleocapsid gene sequence. Mol Breed 6:227–236CrossRefGoogle Scholar
  98. Mallikarjuna N (2005) Production of hybrids between Arachis hypogaea and A. chiquitana (section Proccumbentes). Peanut Sci 32(2):148–152Google Scholar
  99. Mallikarjuna N, Hoisington DA (2009) Peanut improvement: production of fertile hybrids and backcross progeny between Arachis hypogaea and A. kretschmeri. Food Secur 1(4):457–462CrossRefGoogle Scholar
  100. Mallikarjuna N, Pande S, Jadhav DR, Sastri DC, Rao JN (2004) Introgression of disease resistance genes from Arachis kempff-mercadoi into cultivated groundnut. Plant Breed 123(6):573–576Google Scholar
  101. Mallikarjuna N, Sastri DC (2002) Morphological, cytological and disease resistance studies of the intersectional hybrid between Arachis hypogaea L. and A. glabrata Benth. Euphytica 126(2):161–167CrossRefGoogle Scholar
  102. Mallikarjuna N, Senthilvel S, Hoisington DA (2011) Development of new sources of tetraploid Arachis to broaden the genetic base of cultivated groundnut (Arachis hypogaea L.). Genet Res Crop Evol 58(6):889–907Google Scholar
  103. Mallikarjuna N, Tandra SK, Jadhav DR (2006) Arachis hoehnei the probable B genome donor of Arachis hypogaea based on crossability, cytogenetical and molecular studies. J SAT Agri Res 2(1):1–2Google Scholar
  104. Manjunatha SB, Suma TC, Sreevathsa R, Devendra R, Udayakumar M, Prasad TG (2008) Evaluation of advanced generation transgenic groundnut lines resistant to herbicide-glyphosate. Ind J Weed Sci 40:162–165Google Scholar
  105. Mehan VK, Liao BS, Tan YJ, Robinson-Smith A, McDonald D, Hayward AC (1994) Bacterial wilt of groundnut. Information Bulletin no. 35. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, 28 ppGoogle Scholar
  106. Mehan VK, Mayee CD, Brenneman TB, McDonald D (1995) Stem and pod rots of groundnut. Information Bulletin no. 44. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India; Peanut Collaborative Research Support Program, Griffin, GA, USA, 28 ppGoogle Scholar
  107. Mehan VK, Reddy DDR, McDonald D (1993) Resistance in groundnut genotypes to Kalahasti malady caused by the stunt nematode, Tylenchorhynchus brevilineatus. Int J Pest Manag 39:201–203CrossRefGoogle Scholar
  108. Mienie CMS, Pretorius AE (2013) Application of marker-assisted selection for ahFAD2A and ah FAD2B genes governing high oleic acid trait in South African groundnut cultivars (Arachis hypogaea L.). Afr J Biotechnol 12:283–289CrossRefGoogle Scholar
  109. Milla SR, Isleib TG, Tallury SP (2005) Identification of AFLP markers linked to reduced aflatoxin accumulation in A. cardenasii-derived germplasm lines of peanut. Proc Am Peanut Res Educ Soc Inc 37: 90Google Scholar
  110. Mondal S, Badigannavar AM, D’Souza SF (2012) Development of genic molecular marker linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica 188:163–173CrossRefGoogle Scholar
  111. Mondal S, Badigannavar AM, Murty SSS (2008) RAPD markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica 159:233–239CrossRefGoogle Scholar
  112. Mondal S, Hadapad AB, Hande PA, Badignnavar AM (2014) Identification of quantitative trait loci for bruchid (Caryedon serratus L.) resistance components in cultivated groundnut (Arachis hypogaea L.). Mol Breed 33:961–973CrossRefGoogle Scholar
  113. Moore KM, Knauft DA (1989) The inheritance of high oleic acid in peanut. J Heredity 80:252–253Google Scholar
  114. Moretzsohn MC, Barbosa AVG, Alves-Freitas DMT, Teixeira C, Leal-Bertioli SCM, Guimarăes PM, Pereira R, Lopez CR, Cavallari MM, Valls JFM, Bertioli DJ, Gimenes MA (2009) A linkage map for the B genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol 9:40PubMedPubMedCentralCrossRefGoogle Scholar
  115. Moretzsohn MC, Leoi L, Procite K, Guimarăes PM, Leal-Bertioli SCM, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ (2005) A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111:1060–1071PubMedCrossRefGoogle Scholar
  116. Moretzsohn MC, Gouvea EG, Inglis PW, Leal-Bertioli SC, Valls JFM, Bertioli DJ (2013) A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann Bot 111(1):113–126PubMedPubMedCentralCrossRefGoogle Scholar
  117. Moss JP, Singh AK, Nigam SN, Hildebrand GL, Govinden N, Ismael FM, Subrahmanyam P, Reddy LJ (1998) Registration of ICGV-SM 86715 Peanut Germplasm. Crop Sci 38:572CrossRefGoogle Scholar
  118. Moss JP, Singh AK, Reddy LJ, Nigam SN, Subrahmanyam P, McDonald D, Reddy AGS (1997) Registration of ICGV 87165 peanut germplasm line with multiple resistances. Crop Sci 37:1028CrossRefGoogle Scholar
  119. Moss JP, Singh AK, Subrahmanyam P, Hildebrand GL, Murant AF (1993) Transfer of resistance to groundnut rosette disease from a wild Arachis species into cultivated groundnut. Int Arachis Newslett 13:22–23Google Scholar
  120. Mozingo RW, Coffelt TA, Wynne JC (1987) Genetic improvement in large-seeded Virginia-type peanut cultivars since 1944. Crop Sci 27:228–231Google Scholar
  121. Murthy TGK, Reddy PS (eds) (1993) Genetics of groundnuts. In: Cytogenetics and genetics of groundnuts. Antercept, Andover, UK, pp 144–268Google Scholar
  122. Nageswar Rao RC, Nigam SN (2001) Genetic options for drought management in groundnut. In: Saxena NP (ed) Management of agricultural drought: agronomic and genetic options. Oxford and IBH, New Delhi, pp 123–141Google Scholar
  123. Nageswar Rao RC, Talwar HS, Wright GC (2001) Rapid assessment of specific leaf area and leaf N in peanut (Arachis hypogaea L.) using chlorophyll meter. J Agron Crop Sci 189:175–182CrossRefGoogle Scholar
  124. Nageswar Rao RC, Williams JH, Singh M (1989) Genotypic sensitivity to drought and yield potential of peanut. Agron J 81:887–893CrossRefGoogle Scholar
  125. Nageswar Rao RC, Wright GC (1994) Stability of the relationship between specific leaf area and carbon isotope discrimination across environments in peanut. Crop Sci 34:98–103CrossRefGoogle Scholar
  126. Naidu PH, Moses GJ (2000) Identification and evaluation of sources of resistance to Kalahasti malady in groundnut. Ind Phytopath 53:395–398Google Scholar
  127. Nautiyal PC, Bandyopadhyay A, Zala PV (2001) In situ sprouting and regulation of fresh seed dormancy in Spanish type groundnut (Arachis hypogaea L.). Field Crops Res 70:233–241CrossRefGoogle Scholar
  128. Nautiyal PC, Ravindra V, Bandyopadhyay A (1994) Peanut seed dormancy. ACIAR- Food Legumes Newslett 22:2Google Scholar
  129. Nigam SN, Aruna R (2008a) Stability of Soil Plant Analytical Development (SPAD) Chlorophyll Meter Reading (SCMR) and specific leaf area (SLA) and their association across varying soil moisture stress conditions in groundnut (Arachis hypogaea L.). Euphytica 160:111–117CrossRefGoogle Scholar
  130. Nigam SN, Aruna R (2008b) Improving breeding efficiency for early maturity in peanut. Plant Breed Rev 30:295–322Google Scholar
  131. Nigam SN, Bock KR (1990) Inheritance of resistance to groundnut rosette virus in groundnut (Arachis hypogaea L.). Ann Appl Biol 117:553–560CrossRefGoogle Scholar
  132. Nigam SN, Chandra S, Sridevi KR, Bhukta M, Reddy AGS, Rao RCN, Wright GC, Reddy PV, Deshmukh MP, Mathur RK, Basu MS, Vasundhara S, Varman PV, Nagda AK (2005) Efficiency of physiology trait-based and empirical selection approaches for drought tolerance in groundnut. Ann Appl Biol 146:433–439CrossRefGoogle Scholar
  133. Nigam SN, Dwivedi SL, Gibbons RW (1991) Groundnut breeding: constraints, achievements and future possibilities. Plant Breed Abst 61:1127–1136Google Scholar
  134. Nigam SN, Nageswar Rao RC, Wright GC (2003) Breeding for increased water-use efficiency in groundnut. In: Rai M, Singh H, Hegde DM (eds) National seminar on stress management in oilseeds for attaining self-reliance in vegetable oils: thematic papers. Directorate of Oilseed Research, Rajendranagar, Hyderabad, AP, India, pp 305–318Google Scholar
  135. Nigam SN, Nageswara Rao RC, Wynne JC, Williams JH, Fitzner M, Nagabhushanam GVS (1994) Effect and interaction of temperature and photoperiod on growth and partitioning in three groundnut (Arachis hypogaea L.) genotypes. Ann Appl Biol 125:541–552CrossRefGoogle Scholar
  136. Nigam SN, Prasada Rao RDVJ, Bhatnagar-Mathur P, Sharma KK (2012) Genetic management of virus diseases in peanut. Plant Breed Rev 36:293–356Google Scholar
  137. Nigam SN, Upadhyaya HD, Chandra S, Nageswar Rao RC, Wright GC, Reddy AGS (2001) Gene effects for specific leaf area and harvest index in three crosses of groundnut (Arachis hypogaea L.). Ann Appl Biol 139:301–306CrossRefGoogle Scholar
  138. Nigam SN, Waliyar F, Aruna R, Reddy SV, Lava Kumar P, Craufurd PQ, Diallo AT, Ntare BR, Upadhyaya HD (2009) Breeding peanut for resistance to aflatoxin contamination at ICRISAT. Peanut Sci 36:42–49CrossRefGoogle Scholar
  139. Norden AJ, Gorbet DW, Knauft DA, Young CT (1987) Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci 14:7–11CrossRefGoogle Scholar
  140. Ntare BR, Williams JH, Dougbedji F (2001) Evaluation of groundnut genotypes for heat tolerance under field conditions in a Sahelian environment using a simple physiological model for yield. J Agric Sci 136:81–88CrossRefGoogle Scholar
  141. Olorunju PE, Kuhn CW, Demski JW, Misari SM, Ansa OA (1992) Inheritance of resistance in peanut to mixed infections of groundnut rosette virus (GRV) and groundnut rosette assistor virus and a single infection of GRV. Plant Dis 76:95–100CrossRefGoogle Scholar
  142. Olorunju PE, Ntare BR, Pande S, Reddy SV (2001) Additional sources of resistance to groundnut rosette disease in groundnut germplasm and breeding lines. Ann Appl Biol 159:259–268CrossRefGoogle Scholar
  143. Ouedraogo M, Smith OD, Simpson CE, Smith DH (1994) Early and late leaf spot resistance and agronomic performance of nineteen interspecific derived peanut lines. Peanut Sci 21:99–104CrossRefGoogle Scholar
  144. Ozias-Akins P (2007) Peanut. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry, vol 61. Springer, Berlin, pp 81–105Google Scholar
  145. Ozias-Akins P, Schnall JA, Anderson WF, Singsit C, Clemente TE, Adang MJ, Weissinger AK (1993) Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Sci 93:185–194CrossRefGoogle Scholar
  146. Ozias-Akins P, Yang P, Culbreath AK, Gorbet DW, Weeks JR (2002) Field resistance to Tomato spotted wilt virus in a transgenic peanut (Arachis hypogaea L.). Proc Am Res Educ Soc Inc 34:70Google Scholar
  147. Padgham DE, Kimmins FM, Ranga Rao GV (1990) Resistance in groundnut (Arachis hypogaea L.) to Aphis craccivora (Koch.). Ann Appl Biol 117:285–294CrossRefGoogle Scholar
  148. Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarăes P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ. Michelmore R, Varshney RK (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651Google Scholar
  149. Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108:1492–1502PubMedCrossRefGoogle Scholar
  150. Pattee HE, Isleib TG, Giesbrecht FG (1998) Variation in intensity of sweet and bitter sensory attributes across peanut genotypes. Peanut Sci 25:63–69CrossRefGoogle Scholar
  151. Pensuk K, Jogloy S, Wongkaew S, Patanothai A (2004) Generation means analysis of resistance to peanut bud necrosis caused by peanut bud necrosis tospovirus in peanut. Plant Breed 123:90–92CrossRefGoogle Scholar
  152. Pensuk K, Wongkaew S, Jogloy S, Patanothai A (2002) Combining ability for resistance in peanut (Arachis hypogaea) to peanut bud necrosis tospovirus (PBNV). Ann Appl Biol 141:143–146CrossRefGoogle Scholar
  153. Poledate A, Laohasiriwong S, Jaisil P, Vorasoot N, Jogloy S, Kesmala T, Patanothai A (2007) Gene effects for parameters of peanut bud necrosis virus (PBNV) resistance in peanut. Pakistan J Biol Sci 10:1501–1506CrossRefGoogle Scholar
  154. Prasada Rao RDVJ, Reddy AS, Chakarbarty SK, Reddy DVR, Rao VR, Moss JP (1991) Identification of Peanut Stripe Virus resistance in wild Arachis germplasm. Peanut Sci 18:1–2CrossRefGoogle Scholar
  155. Qin H, Gu Q, Zhang JL, Sun L, Kuppu S, Zhang YZ, Burow M, Payton P, Blumwald E, Zhang H (2011) Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol 52:1904–1914PubMedCrossRefGoogle Scholar
  156. Qin HD, Feng SP, Chen C, Guo YF, Knapp S, Culbreath A, He GH, Wang ML, Zhang XY, Holbrook CC, Ozias-Akins P, Guo BZ (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124:653–664PubMedCrossRefGoogle Scholar
  157. Raina SN, Mukai Y (1999) Genomic in situ hybridization in Arachis (Fabaceae) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species. Plant Syst Evol 214:251–262CrossRefGoogle Scholar
  158. Rao MJV, Nigam SN, Huda AKS (1991) Use of thermal time concept in selection for earliness in peanut. Peanut Sci 19:7–10CrossRefGoogle Scholar
  159. Rao MJV, Nigam SN, Mehan VK, McDonald D (1989) Aspergillus flavus resistance breeding in groundnut: progress made at ICRISAT Center. In: McDonald D, Mehan VK (eds) Aflatoxin contamination of groundnut. Proc Int Workshop, 6–9 Oct 1987, ICRISAT Center. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, pp 345–355Google Scholar
  160. Rathnakumar AL, Hariprasanna K, Lalwani HB (2012) Genetic improvement in Spanish type groundnut. J Oilseeds Res 27:1–7Google Scholar
  161. Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132PubMedPubMedCentralCrossRefGoogle Scholar
  162. Reddy LJ, Nigam SN, Singh AK, Moss JP, Subrahmanyam P, McDonald D, Reddy AGS (1996) Registration of ICGV 86699 peanut germplasm line with multiple disease and insect resistance. Crop Sci 36:821CrossRefGoogle Scholar
  163. Reddy PS, Murthy TGK (1996) Current genetic research on groundnut in India. Genetica 97:263–277CrossRefGoogle Scholar
  164. Reddy PS, Zade VR, Desmukh SN (1985) A new Spanish bunch groundnut cultivar with fresh seed dormancy. J Oilseed Res 2:103–106Google Scholar
  165. Ren X, Chen Y, Zhou X, Xia Y, Huang J, Lei Y, Yan L, Wan L, Liao B (2014) Diversity Characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) mini-core collection. J Integr Plant Biol 56(2):159–169Google Scholar
  166. Robledo G, Seijo G (2010) Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor Appl Genet 121:1033–1046PubMedCrossRefGoogle Scholar
  167. Sasson A (1996) Biotechnologies and the use of plant genetic resources for industrial purpose: benefits and constraints for developing countries. In: Castri F di, Younes J (eds) Biodiversity, science and development: towards a new partnership. CAB International, pp 469-487Google Scholar
  168. Seaton ML, Coffelt TA, Van Scoyoc SW (1992) Comparison of vegetative and reproductive traits of 14 peanut cultivars. Olėagineux 47:471–474Google Scholar
  169. Seijo JG, Lavia GI, Fernandez A, Krapovikas A, Ducasse D, Moscone EA (2004) Physical mapping of the 5S and 18S-25S RRNA gene by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303PubMedCrossRefGoogle Scholar
  170. Shan ZH, Duan NX, Jiang HF, Tan YJ, Li D, Liao BS (1998) Inheritance to bacterial wilt in Chinese dragon groundnuts. In: Prior P, Allen C, Elphinstone J (eds) Bacterial wilt disease. Springer, Berlin, pp 300–305CrossRefGoogle Scholar
  171. Sharma KK, Anjaiah VV (2000) An efficient method for the Production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19PubMedCrossRefGoogle Scholar
  172. Shoba D, Manivannan N, Vindhiyavarman P, Nigam SN (2012) SSR markers associated for late leaf spot disease resistance by bulk segregant analysis in groundnut (Arachis hypogaea L.). Euphytica 188:265–272CrossRefGoogle Scholar
  173. Shoba D, Manivannan N, Vindhiyavarman P, Nigam SN (2013) Identification of quantitative trait loci (QTL) for late leaf spot disease resistance in groundnut (Arachis hypogaea L.). Legumes Res 36:467–472Google Scholar
  174. Simpson CE (1991) Pathways for introgression of pest resistance into Arachis hypogaea L. Peanut Sci 18:22–26CrossRefGoogle Scholar
  175. Simpson CE (2001) Use of Wild Arachis species/Introgression of Genes into A. hypogaea. Peanut Sci 28:114–116CrossRefGoogle Scholar
  176. Simpson CE, Krapovickas A, Valls JFM (2001) History of Arachis including evidence of A. hypogaea L. progenitors. Peanut Sci 28:78–80CrossRefGoogle Scholar
  177. Singh AK (1985) Genetic introgression from compatible Arachis species into Groundnut. In: Proceedings of international workshop on cytogenetics of Arachis, Oct 31–Nov 2 1983. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, pp 107–117Google Scholar
  178. Singh AK (1986a) Utilization of wild relatives in the genetic improvement of Arachis hypogaea L. Part 8. Synthetic amphidiploids and their importance in interspecific breeding. Theor Appl Genet 72:433–439PubMedCrossRefGoogle Scholar
  179. Singh AK (1986b) Utilization of wild relatives in the genetic improvement of Arachis hypogaea L. Part 7. Autotetraploid production and prospects in interspecific breeding. Theor Appl Genet 72:164–169PubMedCrossRefGoogle Scholar
  180. Singh AK (1988) Putative genome donors of A. hypogaea L. Evidence from cross with synthetic amphidiploids. Plant Syst Evol 160:143–153CrossRefGoogle Scholar
  181. Singh AK (1998) Hybridization barriers among species of Arachis L., namely of the section Arachis (including the groundnut) and Erectoides. Genet Res Crop Evol 45:41–45CrossRefGoogle Scholar
  182. Singh AK, Dwivedi SL, Pande S, Moss JP, Nigam SN, Sastri DC (2003) Registration of rust and late leaf spot resistant peanut germplasm lines. Crop Sci 43(1):440–441CrossRefGoogle Scholar
  183. Singh AK, Gibbons RW (1985) Wild species in crop improvement: groundnut—A case study. In: Gupta PK, Bahl JR (eds) Advances in genetics and crop improvement. Rastogi Publication, Meerut, pp 297–308Google Scholar
  184. Singh AK, Mehan VK, Nigam SN (1997) Sources of resistance to groundnut fungal and bacterial diseases: an update and appraisal. Information Bulletin no. 50. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, 48 ppGoogle Scholar
  185. Singh AK, Moss JP (1982) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. Part 2. Chromosome complement of species in section Arachis. Theor Appl Genet 61:305–314PubMedGoogle Scholar
  186. Singh AK, Moss JP (1984a) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. VI. Fertility in triploids: cytological basis and breeding implications. Peanut Sci 11:17–21CrossRefGoogle Scholar
  187. Singh AK, Moss JP (1984b) Utilization of wild relatives in the genetic improvement of Arachis hypogaea L. Part 5. Genome analysis in section Arachis and its implications in gene transfer. Theor Appl Genet 68:355–364PubMedCrossRefGoogle Scholar
  188. Singh AK, Nigam SN (1996) Gains in groundnut productivity illustrates success of resistance breeding based on exotic germplasm. Diversity 12:59–60Google Scholar
  189. Singh AK, Nigam SN (1997) Groundnut In: Fuccillo D, Sears L, Stapleton P (eds) Biodiversity in trust—conservation and use of plant genetic resources in CGIAR center. Cambridge University Press Cambridge UK, pp 113–124Google Scholar
  190. Singh AK, Sastri DC, Moss JP (1980) Utilization of wild Arachis species at ICRISAT. In: ICRISAT (International Crops Research Institute for the Semi-Arid Tropics) Proceedings of the international groundnut workshop (13–17 Oct 1980), Patancheru, AP, India, pp 82–90Google Scholar
  191. Singh AK, Simpson CE (1994) Biosystematic and Genetic Resources. In: Smartt J (ed) The groundnut crop. A scientific basis for improvement. Chapman and Hall, London, pp 96–138CrossRefGoogle Scholar
  192. Singh AK, Sivaramakrishnan S, Mengesha MH, Ramaiah CD (1991) Phylogenetic relationships in section Arachis based on seed protein profile. Theor Appl Genet 82:593–597PubMedGoogle Scholar
  193. Singh AK, Smartt J (1998) The genome donors of the groundnut/peanut (Arachis hypogaea L.) revisited. Genet Res Crop Evol 45:113–118CrossRefGoogle Scholar
  194. Singh AK, Stalker HT, Moss JP (1990) Cytogenetics and use of alien genetic variation in groundnut (Arachis) improvement. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding & evolution. Elsevier, Amsterdam, pp 65–77Google Scholar
  195. Singh AK, Subrahmanyam P, Gurtu S (1996) Variation in a wild groundnut species, Arachis duranensis Krapov. & W.C. Gregory. Genet Res Crop Evol 43:135–142CrossRefGoogle Scholar
  196. Singh AL, Hariprasanna K, Chaudhary V, Gor HK, Chikani BM (2010) Identification of groundnut (Arachis hypogaea L.) cultivars tolerant of soil salinity. J Plant Nutr 33:1761–1776CrossRefGoogle Scholar
  197. Singh AL, Hariprassana K, Solanki RM (2008) Screening and selection of groundnut genotypes for tolerance of soil salinity. Aust J Crop Sci 1:69–77Google Scholar
  198. Singh Anurudh K, Smartt J, Rakesh Singh (2004) Variation studies in a wild groundnut species, Arachis stenosperma Krapov. & W.C. Gregory nov. sp. Plant Genet Resour 2:99–106CrossRefGoogle Scholar
  199. Singsit C, Adang MJ, Lynch RE, Anderson WF, Wang A, Cardineau C, Ozias-Akins P (1997) Expression of a Bacillus thuringiensis cry1A(c) gene in transgenetic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res 6:169–176PubMedCrossRefGoogle Scholar
  200. Smartt J (1990) Grain legumes: evolution and genetic resources, 2nd edn. Cambridge University, Cambridge, 531 ppGoogle Scholar
  201. Smartt JS, Gregory WC (1967) Interspecific crosscompatibility between the cultivated peanut Arachis hypogaea L. and other members of the genus Arachis. Oléagineux 22(7):455–459Google Scholar
  202. Smartt JS, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors. Euphytica 27:665–675CrossRefGoogle Scholar
  203. Songsri P, Jogloy S, Kesmala T, Vorasoot N, Akkasaeng C, Patonothai A, Holbrook CC (2008a) Heritability of drought resistance traits and correlation of drought resistance and agronomic traits in peanut. Crop Sci 48:2245–2253CrossRefGoogle Scholar
  204. Songsri P, Jogloy S, Vorasoot N, Akkasaeng C, Patonothai A, Holbrook CC (2008b) Root distribution of drought-resistant peanut genotypes in response to drought. J Agron Crop Sci 194:92–103CrossRefGoogle Scholar
  205. Srikanth S, Shilpa K, Jadhav D, Satyanarayana T, Mallikarjuna N (2012) Meiotic study of three synthesized tetraploid groundnut. Ind J Genet Plant Breed 72(3):332–335Google Scholar
  206. Stalker HT (1991) A new species in section Arachis of peanuts with a D genome. Am J Bot 78(5):630–637CrossRefGoogle Scholar
  207. Stalker HT, Moss JP (1987) Speciation, cytogenetics and utilization of Arachis species. Adv Agron 41:1–40CrossRefGoogle Scholar
  208. Stalker HT, Mozingo LG (2001) Molecular markers of Arachis and marker-assisted selection. Peanut Sci 28:117–123CrossRefGoogle Scholar
  209. Subrahmanyam P, Hildebrand GL, Naidu RA, Reddy LR, Singh AK (1998) Sources of resistance to groundnut rosette disease in global groundnut germplasm. Ann Appl Biol 132:473–485CrossRefGoogle Scholar
  210. Sunkara S, Bhatnagar-Mathur P, Sharma KK (2013) Transgenic interventions in peanut crop improvement: progress and prospects. In: Mallikarjuna N, Varshney RK (eds) Genetics, Genomics and Breeding of peanuts. CRC Press, Taylor and Francis, Boca Raton, Florida, pp 179–216Google Scholar
  211. Taliansky ME, Robinson DJ, Murant AF (1996) Complete nucleotide sequence and organization of the RNA genome of groundnut rosette umbravirus. J Gen Virol 77:2335–2345PubMedCrossRefGoogle Scholar
  212. Tiwari S, Mishra DK, Singh A, Singh PK, Tuli R (2008) Expression of a synthetic cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep 27:1017–1025PubMedCrossRefGoogle Scholar
  213. Upadhyaya HD, Bramel PJ, Ortiz R, Singh S (2002a) Developing a minicore of peanut for utilization of genetic resources. Crop Sci 42:2150–2156CrossRefGoogle Scholar
  214. Upadhyaya HD, Mallikarjuna Swamy BP, Kenchana Goudar PV, Kullaiswamy BY, Singh S (2005) Identification of diverse groundnut germplasm through multienvironment evaluation of a core collection for Asia. Field Crops Res 93:293–299CrossRefGoogle Scholar
  215. Upadhyaya HD, Nigam SN (1999) Inheritance of fresh seed dormancy in peanut. Crop Sci 39:98–101CrossRefGoogle Scholar
  216. Upadhyaya HD, Nigam SN, Mehan VK, Lenne JM (1997a) Aflatoxin contamination of groundnut- prospects of a genetic solution through conventional breeding. In: Mehan VK, Gowda CLL (eds) Aflatoxin contamination problems in groundnut in Asia: proceedings of the first working group meeting, 27–29 May 1996. Ministry of Agriculture and Rural Development, Hanoi, Vietnam, ICRISAT, Patancheru, India, pp 81–85Google Scholar
  217. Upadhyaya HD, Nigam SN, Rao MJV, Reddy AGS, Yellaiah N, Reddy NS (1997b) Registration of five Spanish peanut germplasm with fresh seed dormancy. Crop Sci 37:1027CrossRefGoogle Scholar
  218. Upadhyaya HD, Nigam SN, Thakur RP (2002b) Genetic enhancement for resistance to aflatoxin contamination in groundnut In: Summary Proc of the seventh ICRISAT regional groundnut meeting for Western and Central Africa, 6-8 December 2000, Cotonou, Benin. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, pp 29–36Google Scholar
  219. Upadhyaya HD, Ortiz R, Bramel PJ, Singh S (2003) Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genet Res Crop Evol 50:139–148CrossRefGoogle Scholar
  220. Upadhyaya HD, Reddy LJ, Gowda CLL, Singh S (2006) Identification of diverse groundnut germplasm: sources of early maturity in a core collection. Field Crops Res 97(2–3):261–271CrossRefGoogle Scholar
  221. Upadhyaya HD Sharma S and Dwivedi SL (2011) Arachis. In: Kole C (ed) Wild crop relatives: genomics and breeding resources, Legume Crops and Forages. Springer, Berlin, pp 1–19CrossRefGoogle Scholar
  222. Upadhyaya HD, Yadav D, Dronavalli N, Gowda CLLL, Singh S (2010) Minicore germplasm collection for infusing genetic diversity in plant breeding program. Electr J Plant Breed 1(4):1294–1309Google Scholar
  223. Valls JFM, Ramanatha Rao V, Simpson CE and Krapovickas A (1985) Current status of collection and conservation of South American groundnut germplasm with emphasis on wild species of Arachis. In: Proceedings of international workshop on cytogenetics of Arachis, Oct 31–Nov 2 1983. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, pp 15–35Google Scholar
  224. Valls JFM, Simpson CE (2005) New species of Arachis (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14(1–2):35–63Google Scholar
  225. Varma TSN, Dwivedi SL, Pande S, Gowda MVC (2005) SSR markers associated with resistance to rust (Puccinia arachidis Speg.) in groundnut (Arachis hypogaea L.). SABRAO J Breed Genet 37:107–119Google Scholar
  226. Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K, He G, Knapp SJ, Hoisington DA (2009) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118:729–739PubMedCrossRefGoogle Scholar
  227. Waliyar F, Kumar PL, Ntare BR, Monyo E, Nigam SN, Reddy AS, Osiru M, Diallo AT (2007) A century of research on groundnut rosette disease and its management. Information Bulletin no. 75. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, 40 ppGoogle Scholar
  228. Wang M, Abbott D, Waterhouse PM (2000) A single copy of a virus derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Path 1:401–410CrossRefGoogle Scholar
  229. Weber JL (1990) Informativeness of huan (dC-dA) (dG-dT) in polymorphism. Genomics 7:524–530PubMedCrossRefGoogle Scholar
  230. Wells R, Bi T, Anderson WF, Wynne JC (1991) Peanut yield as a result of fifty years of breeding. Agron J 83:957–961CrossRefGoogle Scholar
  231. Wightman JA, Ranga Rao GV (1994) Groundnut pests. In: Smartt J (ed) The groundnut crop: a scientific basis for improvement. Chapman and Hall, London, pp 395–479CrossRefGoogle Scholar
  232. Wildman LG, Smith OD, Simpson CE, Taber RA (1992) Inheritance of resistance to Sclerotinia minor in selected Spanish peanut crosses. Peanut Sci 19:31–35CrossRefGoogle Scholar
  233. Williams ED (1991) Exploration of Amozonian Bolivia yields rare peanut landraces. Diversity 5:12–13Google Scholar
  234. Williams JH, Boote KJ (1995) Physiology and modeling-predicting the unpredictable legume. In: Pattee HE, Stalker HT (eds) Advances in peanut science. Am Peanut Res Educ Soc Stillwater 301–353Google Scholar
  235. Wright GC, Nageswar Rao RC, Basu MS (1996) A physiological approach to the understanding of genotype by environment interactions—A case study on improvement of drought adaptation in peanut. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford, pp 365–381Google Scholar
  236. Wright GC, Nageswar Rao RC, Farquhar GD (1994) Water-use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Sci 34:92–97CrossRefGoogle Scholar
  237. Xue HQ, Isleib TG, Payne GA, Novitzky WF, OBrian G (2005) Aflatoxin production in peanut lines selected to represent a range of linoleic acid concentrations. J Food Protect 68:126–132Google Scholar
  238. Yang H, Singcit C, Wang A, Gonsalves D, Ozias-Akins P (1998) Transgenic peanut plants containing a nucleocapsid protein gene of tomato spotted wilt virus show divergence levels of gene expression. Plant Cell Rep 17:693–699CrossRefGoogle Scholar
  239. Yaw AJ, Richard A, Safo-Kantanka O, Adu-Dapaah HK, Ohemeng-Dapaah S, Agyeman A (2008) Inheritance of fresh seed dormancy in groundnut. Afr J Biotechnol 7:421–424Google Scholar
  240. Yin DM, Tang HT, Tai GQ, Yang QY, Cui DQ (2009) Expression analysis and establishment of regeneration system of oleate desaturase gene in peanut. Scientia Agricultura Sinica 42:1827–1832Google Scholar
  241. Zhang XQ, Shan L, Tang GY, Teng N, Bi YP (2007) Transformation of RNAi suppressed expression vector containing of Δ12 fatty acid desaturase gene via Agrobacterium infection in peanut (Arachis hypogaea L.). Chin J Oil Crop Sci 29:409–415Google Scholar
  242. Zhou GY, Liang XQ (2002) Analysis of major-minor genes related to resistance to infection by Aspergillus flavus in peanut. J Peanut Sci 31:11–14Google Scholar
  243. Zhou GY, Liang XQ, Li YC, Li XC, Li SL (1999) Evaluation and application of introduced peanut cultivars for resistance to Aspergillus flavus invasion. J Peanut Sci 32:14–17Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.GurgaonIndia
  2. 2.HyderabadIndia

Personalised recommendations