Advertisement

An Ancient Medicinal Plant at the Crossroads of Modern Horticulture and Genetics: Genetic Resources and Biotechnology of Sea Buckthorn (Hippophae L., Elaeagnaceae)

  • Igor V. BartishEmail author
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 10)

Abstract

Sea buckthorn (Hippophae L., Elaeagnaceae) has been exploited by humans for thousands of years on the Quinghai–Tibetan Plateau (QTP) and nearby areas. However, the considerable modern economic potential of this plant has started to receive full appreciation only recently. Expanding its traditional use in harsh climatic zones as important source of nutrients, vitamins, and as wood in treeless areas, today this plant is used also on large scales as landscape protection tools against corrosion of soil, and as a source of wide range of products in pharmaceutic, cosmetic, and nutritional supplement industries. This review aims to provide the latest insights from studies on the evolutionary history and biogeography of the genus, structure, and phylogeography of genetic diversity within its species. Understanding the genic and genomic interactions among populations and phylogenetically distant lineages within species of Hippophae should help to improve the efficiency of exploitation of genetic resources in this crop. Research efforts in the past century in breeding, systematics, cytogenetics, biochemistry, and genetics of Hippophae have created a solid background for advances in modern biotechnology of this crop. Recent studies reported application of next-generation sequencing (NGS) technologies and identification of thousands of genes in transcriptomes of sea buckthorn. Analyses of the transcriptomes provided better understanding of gene expression in biochemical pathways of unsaturated fatty acids, some other secondary metabolites, and regulation of gene complexes responsible for adaptation to different categories of abiotic stress. Further studies should focus on the creation of genetic maps of breeding populations; identification of quantitative trait loci, biochemical pathways of synthesis of bioactive secondary metabolites and correspondent genes, molecular mechanisms of tolerance and resistance to abiotic stress, diseases, and pests; and cloning of genes of agricultural importance. Advances in these research areas can lead to genetic engineering of plants with a combination of traits of high horticultural, medicinal, or nutrient value, adapted to specific environments of areas of their cultivation.

Keywords

Biogeography Genetic diversity Genetic engineering Hippophae rhamnoides Homoploid hybridization Marker-assisted selection Molecular breeding Molecular cloning Phylogeography Population structure 

Notes

Acknowledgements

Financial support for Ph.D. studies by Dongrui Jia and Alexey A. Borisyuk, field trips in 2012–2014 by Igor V. Bartish and Alexey A. Borisyuk, and research of Igor V. Bartish on Hippophae from Alexey L. Kudrin foundation “Strategy” is greatly appreciated.

References

  1. Akkaya MS, Shoemaker RC, Specht JE, Bhagwat AA, Cregan PB (1995) Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci 35:1439–1445CrossRefGoogle Scholar
  2. Antanaviciute L, Fernandez-Fernandez F, Jansen J, Banchi E, Evans K, Viola R, Velasco R, Dunwell J, Troggio M, Sargent D (2012) Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array. BMC Genom 13:203CrossRefGoogle Scholar
  3. APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  4. Aras A, Akkemik U, Kaya Z (2007) Hippophae rhamnoides L.: fruit and seed morphology and its taxonomic problems in Turkey. Pak J Bot 39:1907–1916Google Scholar
  5. Backlund A, Bremer K (1998) To be or not to be − principles of classification and monotypic plant families. Taxon 47:391–400CrossRefGoogle Scholar
  6. Barry CS, Giovannoni JJ (2006) Ripening in the tomato green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci U.S.A. 103:923–7928Google Scholar
  7. Bartish GI, Jeppsson N, Bartish IV, Nybom H (2000b) Assessment of genetic diversity using RAPD analysis in a germplasm collection of sea buckthorn. Agric Food Sci Finland 9:279–289Google Scholar
  8. Bartish IV, Jeppsson N, Nybom H (1999) Population genetic structure in the dioecious pioneer plant species Hippophae rhamnoides investigated by random amplified polymorphic DNA (RAPD) markers. Mol Ecol 8:791–802CrossRefGoogle Scholar
  9. Bartish IV, Jeppsson N, Bartish GI, Lu R, Nybom H (2000a) Inter- and intraspecific genetic variation in Hippophae (Elaeagnaceae) investigated by RAPD markers. Plant Syst Evol 225:85–101CrossRefGoogle Scholar
  10. Bartish IV, Jeppsson N, Nybom H, Swenson U (2002) Phylogeny of Hippophae (Elaeagnaceae) inferred from parsimony analysis of chloroplast DNA and morphology. Syst Bot 27:41–54Google Scholar
  11. Bartish IV, Kadereit JW, Comes P (2006) Late Quaternary history of Hippophae rhamnoides L. (Elaeagnaceae) inferred from chalcone synthase intron (Chsi) sequences and chloroplast DNA variation. Mol Ecol 15:4065–4083CrossRefPubMedGoogle Scholar
  12. Biltekin D (2010) Vegetation and climate of North Anatolian and North Aegean region since 7 Ma according to pollen analysis. Ph.D. thesis, Université Claude Bernard-Lyon I and Istanbul Technical University. http://tel.archives-ouvertes.fr/docs/00/72/08/92/PDF/TH2010_Biltekin_Demet.pdf
  13. Birky CW, Maruyama T, Fuerst P (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103:513–527PubMedPubMedCentralGoogle Scholar
  14. Bobrov EG (1962) Review on genus Myricaria Desv. and its history. Botanicheskiy Zhurnal 52:924–936 (in Russian with English abstract)Google Scholar
  15. Chen G, Wang Y, Zhao C, Korpelainen H, Li C (2008) Genetic diversity of Hippophae rhamnoides populations at varying altitudes in the Wolong natural reserve of China as revealed by ISSR markers. Silvae Genet 57:29–36Google Scholar
  16. Chen W, Su X, Zhang H, Sun K, Ma R, Chen X (2010) High genetic differentiation of Hippophae rhamnoides ssp. yunnanensis (Elaeagnaceae), a plant endemic to the Qinghai-Tibet plateau. Biochem Genet 48:565–576CrossRefPubMedGoogle Scholar
  17. Cheng K, Sun K, Wen HY, Jia DR, Liu JQ (2009) Maternal divergence and phylogeographical relationships between Hippophae gyantsensis and H. rhamnoides subsp. yunnanensis. Zhiwu Shengtai Xuebao 33:1–11 (in Chinese with English abstract)Google Scholar
  18. Chowdhury MA, Jana S, Schroeder WR (2000) Phenotypic diversity in four woody species on the Canadian prairies. Can J Plant Sci 80:137–142CrossRefGoogle Scholar
  19. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196CrossRefGoogle Scholar
  20. Congiu L, Chicca M, Cella R, Rossi R, Bernacchia G (2000) The use of random amplified polymorphic DNA (RAPD) markers to identify strawberry varieties: a forensic application. Mol Ecol 9:229–232CrossRefPubMedGoogle Scholar
  21. Dardick C, Callahan A, Horn R, Ruiz KB, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R (2013) PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J 75:618–630CrossRefPubMedGoogle Scholar
  22. Ercisli S, Orhan E, Yildirim N, Agar G (2008) Comparasion of sea buckthorn genotypes (Hippophaë rhamnoides L.) based on RAPD and FAME data. Turkish J Agric For 32:363–368Google Scholar
  23. Fatima T, Snyder CL, Schroeder WR, Cram D, Datla R, Wishart D, Weselake RJ, Krishna P (2012) Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed. PLoS ONE 7:e34099CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fernandez-Fernandez F, Antanaviciute L, van Dyk MM, Tobutt KR, Evans KM, Rees DJG, Dunwell JM, Sargent DJ (2012) A genetic linkage map of an apple rootstock progeny anchored to the Malus genome sequence. Tree Genet Genomes 8:991–1002CrossRefGoogle Scholar
  25. Gams H (1943) Der Sanddorn (Hippophae rhamnoides L.) im Alpengebiet. Beihefte zum Botanischen Centralblatt, Abteilung B 2:68–96Google Scholar
  26. Ghangal R, Raghuvanshi S, Sharma PC (2012) Expressed sequence tag based identification and expression analysis of some cold inducible elements in sea buckthorn (Hippophae rhamnoides L.). Plant Physiol Biochem 51:123–128CrossRefPubMedGoogle Scholar
  27. Ghangal R, Chaudhary S, Jain M, Purty RS, Sharma PC (2013) Optimization of de novo short read assembly of sea buckthorn (Hippophae rhamnoides L.) transcriptome. PLoS ONE 8:7CrossRefGoogle Scholar
  28. Glick BR, Pasternak J, Patten CL (2010) Molecular Biotechnology: Principles and Applications of Recombinant DNA. ASM Press, Washington, D.C.Google Scholar
  29. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185CrossRefGoogle Scholar
  30. Gupta SM, Ahmed Z, Kumar N (2009) Isolation of cDNA fragment of glycerol-3-phosphate acyltransferase gene from sea buckthorn. Def Sci J 59:147–151CrossRefGoogle Scholar
  31. Gusberti M, Gessler C, Broggini GAL (2013) RNA-seq analysis reveals candidate genes for ontogenic resistance in Malus-Venturia pathosystem. PLoS ONE 8:e78457CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jain A, Ghangal R, Grover A, Raghuvanshi S, Sharma PC (2010) Development of EST-based new SSR markers in sea buckthorn. Physiol Mol Biol Plants 16:375–378CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jain A, Chaudhary S, Sharma PC (2014) Mining of microsatellites using next generation sequencing of sea buckthorn (Hippophae rhamnoides L.) transcriptome. Physiol Mol Biol Plants 20:115–123CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jia DR, Liu TL, Wang LY, Zhou DW, Liu JQ (2011) Evolutionary history of an alpine shrub Hippophae tibetana (Elaeagnaceae): allopatric divergence and regional expansion. Biol J Linn Soc 102:37–50CrossRefGoogle Scholar
  35. Jia DR, Abbott RJ, Liu TL, Mao KS, Bartish IV, Liu JQ (2012) Out of the Qinghai-Tibet Plateau: evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophaë rhamnoides (Elaeagnaceae). New Phytol 194:1123–1133CrossRefPubMedGoogle Scholar
  36. Jia DR (2013) Influence of climatic fluctuations in Neogene on evolution of ecologically diverse plant genus: an example of Hippophae L. (Elaeagnaceae). Ph.D. thesis, Charles University in Prague, Czech Republic. https://is.cuni.cz/webapps/zzp/detail/99009/?lang=en
  37. Jeppsson N, Bartish IV, Persson HA (1999) DNA analysis as a tool in sea buckthorn breeding. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, VA, pp 338–341Google Scholar
  38. Ho SYW, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 58:367–380CrossRefPubMedGoogle Scholar
  39. Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus x domestica Borkh. core subset collection. Theor Appl Genet 97:671–683CrossRefGoogle Scholar
  40. Huang Q (1995) A review of sea buckthorn breeding in China. In: Proceedings of international workshop on Seabuckthorn. Beijing, China, pp 111–117Google Scholar
  41. Hyvönen J (1996) On phylogeny of Hippophae (Elaeagnaceae). Nordic J Bot 16:51–62CrossRefGoogle Scholar
  42. Kalia RK, Singh R, Rai MK, Mishra GP, Singh SR, Dhawan AK (2011) Biotechnological interventions in sea buckthorn (Hippophae L.): current status and future prospects. Trees Struct Funct 25:559–575CrossRefGoogle Scholar
  43. Kalinina IP, Panteleyeva YI (1987) Breeding of sea buckthorn in the Altai. In: Advances in agricultural science. Moscow, Russia (in Russian)Google Scholar
  44. Kanayama Y, Kato K, Stobdan T, Galitsyn GG, Kochetov AV, Kanahama K (2012) Research progress on the medicinal and nutritional properties of sea buckthorn (Hippophae rhamnoides)—a review. J Hortic Sci Biotech 87:203–210CrossRefGoogle Scholar
  45. Korekar G, Sharma RK, Kumar R, Meenu RK, Bisht NC, Srivastava RB, Ahuja PS, Stobdan T (2012) Identification and validation of sex-linked SCAR markers in dioecious Hippophae rhamnoides L. (Elaeagnaceae). Biotechnol Lett 34:973–978CrossRefPubMedGoogle Scholar
  46. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461CrossRefGoogle Scholar
  47. Li H, Ruan CJ, Teixeira da Silva JA, Liu BQ (2010) Associations of SRAP markers with dried-shrink disease resistance in a germplasm collection of sea buckthorn (Hippophae L.). Genome 53:447–457CrossRefPubMedGoogle Scholar
  48. Li TSC, Schroeder WR (1996) Sea buckthorn (Hippophae rhamnoides L.): a multipurpose plant. HortTechnology 6:370–380Google Scholar
  49. Li TSC (2003) See buckthorn (Hippophae rhamnoides L.): production and utilisation. National Research Council of Canada, OttawaGoogle Scholar
  50. Lian YS, Chen XL (1993) Study on the germplasm resource of the genus Hippophae L. In: International symposium on sea buckthorn (Hippophae rhamnoides L.). Novosibirsk, Russia, pp 157161Google Scholar
  51. Lian YS, Chen XL, Sun K (1995) New discoveries of the genus Hippophae L. In: Proceedings of international workshop on seabuckthorn. China Science and Technology Press, Beijing, pp 60–66Google Scholar
  52. Lian YS, Chen XL, Lian H (1998) Systematic classification of the genus Hippophae L. Seabuckthorn Res 1:13–23Google Scholar
  53. Lian YS, Chen XL, Sun K, Ma R (2003a) A new subspecies of Hippophae (Elaeagnaceae) from China. Novon 13:200–202CrossRefGoogle Scholar
  54. Lian YS, Chen XL, Sun K, Ma R (2003b) Clarification of the systematic position of Hippophae goniocarpa (Elaeagnaceae). Bot J Linn Soc 142:425–430CrossRefGoogle Scholar
  55. Liu R, Yang J, Gao L (2007) ISSR analysis of Chinese sea buckthorn and Russian sea buckthorn. Acta Bot Boreal Occident Sin 27:671–677 Google Scholar
  56. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402Google Scholar
  57. Meng LH, Yang HL, Wu GL, Wang YJ (2008) Phylogeography of Hippophae neurocarpa (Elaeagnaceae) inferred from the chloroplast DNA trnL-F sequence variation. J Syst Evol 46:32–40Google Scholar
  58. Morgante M, Olivieri AM (1993) PCR-amplified microsatellite markers in plant genetics. Plant J 3:393–427CrossRefGoogle Scholar
  59. Nybom H, Bartish IV, Garkava-Gustavsson L, Persson H, Werlemark G, Esselink D (2003) Evaluating genetic resources in minor fruits. In: Janick J (ed) Genetics and breeding of tree fruits and nuts. International Society of Horticultural Science, Leuven, pp 81–94Google Scholar
  60. Persson HA, Nybom H (1998) Genetic sex determination and RAPD marker segregation in the dioecious species sea buckthorn (Hippophae rhamnoides L.). Hereditas 129:45–51CrossRefGoogle Scholar
  61. Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck GM, Demesure-Musch B, Palme A, Martin JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565CrossRefPubMedGoogle Scholar
  62. Raina SN, Jain S, Sehgal D, Kumar A, Dar TH, Bhat V, Pandey V, Vaishnavi S, Bhargav A, Singh V, Rani V, Tandon R, Tewari M, Mahmoudi A (2012) Diversity and relationships of multipurpose sea buckthorn (Hippophae L.) germplasm from the Indian Himalayas as assessed by AFLP and SAMPL markers. Genet Resour Crop Evol 59:1033–1053CrossRefGoogle Scholar
  63. Rousi A (1965) Observations on the cytology and variation of European and Asiatic populations of Hippophaë rhamnoides. Ann Bot Fenn 2:1–18Google Scholar
  64. Rousi A (1971) The genus Hippophaë L: a taxonomic study. Ann Bot Fenn 8:177–227Google Scholar
  65. Ruan CJ, Qin P, Zheng JW, He ZX (2004) Genetic relationships among some cultivars of sea buckthorn from China, Russia and Mongolia based on RAPD analysis. Sci Hortic 101:417–426CrossRefGoogle Scholar
  66. Ruan CJ, Li DQ (2005) AFLP fingerprinting analysis of some cultivated varieties of sea buckthorn (Hippophae rhamnoides). J Genet 84:311–316CrossRefPubMedGoogle Scholar
  67. Ruan CJ (2006) Genetic relationships among sea buckthorn varieties from China, Russia and Mongolia using AFLP markers. J Hortic Sci Biotechnol 81:409–414CrossRefGoogle Scholar
  68. Ruan CJ, Li H, Mopper S (2009) Characterization and identification of ISSR markers associated with resistance to dried-shrink disease in sea buckthorn. Mol Breeding 24:255–268CrossRefGoogle Scholar
  69. Ruan C-J, Teixeira da Silva JA, Li Q, Li H, Zhang J (2010) Pathogenicity of dried-shrink disease and evaluation of resistance in a germplasm collection of sea buckthorn (Hippophae L.) from China and other countries. Sci Hortic 127:70–78CrossRefGoogle Scholar
  70. Ruan CJ, Rumpunen K, Nybom H (2013) Advances in improvement of quality and resistance in a multipurpose crop: sea buckthorn. Crit Rev Biotechnol 33:126–144CrossRefPubMedGoogle Scholar
  71. Sauquet H, Ho SY, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, Bayly MJ, Bromham L, Brown GK, Carpenter RJ (2012) Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Syst Biol 61:289–313CrossRefPubMedGoogle Scholar
  72. Servettaz C (1908) Monographie der Elaeagnaceae. Beihefte zum Botanischen Centralblatt 25:1–420Google Scholar
  73. Shah AH, Ahmad SD, Khaliq I, Batool F, Hassan L, Pearce RS (2009) Evaluation of phylogenetic relationship among sea buckthorn (Hippophae rhamnoides L. ssp. turkestanica) wild ecotypes from Pakistan using amplified fragment length polymorphism (AFLP). Pak J Bot 41:2419–2426Google Scholar
  74. Sharma A, Zinta G, Rana S, Shirko P (2010) Molecular identification of sex in Hippophae rhamnoides L. using isozyme and RAPD markers. For Stud China 12:62–66CrossRefGoogle Scholar
  75. Sheng H, An L, Chen T, Xu S, Liu G, Zheng X, Pu L, Liu Y, Lian Y (2006) Analysis of the genetic diversity and relationships among and within species of Hippophae (Elaeagnaceae) based on RAPD markers. Plant Syst Evol 260:25–37CrossRefGoogle Scholar
  76. Simon-Gruita A, Tataru E, Constantin N, Duta Cornescu G, Pavlusenco Camelia E, Rati V, Rati L, Stoian V (2012) The assessment of the genetic diversity of sea buckthorn populations from Romania using RAPD markers. Rom Biotechnol Lett 17:7749–7756Google Scholar
  77. Singh R, Ahmed Z (2010) Sea buckthorn: a multipurpose medicinal plant. In: Singh VK, Govil JN (eds) Drug plants IV. Studium Press Ltd, Houston, pp 227–239Google Scholar
  78. Sorsa P (1971) Pollen morphological study of the genus Hippophaë L., including new taxa recognized by A Rousi. Ann Bot Fenn 8:228–236Google Scholar
  79. Srihari JM, Verma B, Kumar N, Chahota RK, Singh V, Rathour R, Singh SK, Sharma SK, Sharma TR (2013) Analysis of molecular genetic diversity and population structure in sea buckthorn (Hippophae spp L.) from north-western Himalayan region of India. J Med Plants Res 7:3183–3196Google Scholar
  80. Sun K, Chen X, Ma R, Li C, Wang Q, Ge S (2002) Molecular phylogenetics of Hippophae L. (Elaeagnaceae) based on the internal transcribed spacer (ITS) sequences of nrDNA. Plant Syst Evol 235:121–134CrossRefGoogle Scholar
  81. Sun K, Ma R, Chen X, Li C, Ge S (2003) Hybrid origin of the diploid species Hippophae goniocarpa evidenced by the internal transcribed spacers (ITS) of nuclear rDNA. Belg J Bot 136:91–96Google Scholar
  82. Sun K, Chen W, Ma R, Chen X, Li A, Ge S (2006) Genetic variation in Hippophae rhamnoides ssp. sinensis (Elaeagnaceae) revealed by RAPD markers. Biochem Genet 44:186–197CrossRefPubMedGoogle Scholar
  83. Suryakumar G, Gupta A (2011) Medicinal and therapeutic potential of sea buckthorn (Hippophae rhamnoides L.). J Ethnopharmacol 138:268–278CrossRefPubMedGoogle Scholar
  84. Swenson U, Bartish IV (2002) Taxonomic synopsis of Hippophae (Elaeagnaceae). Nordic J Bot 22:369–374CrossRefGoogle Scholar
  85. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233CrossRefPubMedGoogle Scholar
  86. Tian CJ, Lei YD, Shi H, Nan P, Chen JK, Zhong Y (2004a) Genetic diversity of sea buckthorn (Hippophae rhamnoides) populations in northeastern and northwestern China as revealed by ISSR markers. New Forest 27:229–237CrossRefGoogle Scholar
  87. Tian CJ, Nan P, Shi SH, Chen JK, Zhong Y (2004b) Molecular genetic variation in Chinese populations of three subspecies of Hippophae rhamnoides. Biochem Genet 42:259–267CrossRefPubMedGoogle Scholar
  88. Trajkovski V, Jeppsson N (1999) Domestication of sea buckthorn. Bot Lithuanica suppl. 2:37–46Google Scholar
  89. Tsvelev NN (2002) On the genera Elaeagnus and Hippophae (Elaeagnaceae) in Russia and adjacent states. Botanicheskiy Zhurnal 87:74–86 (in Russian with English abstract)Google Scholar
  90. Tzedakis PC, Emerson BC, Hewitt GM (2013) Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol Evol 28:696–704CrossRefPubMedGoogle Scholar
  91. Virk PS, Ford-Lloyd BV, Jackson MT, Pooni HS, Clemeno TP, Newbury HJ (1996) Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76:296–304CrossRefGoogle Scholar
  92. Wang AL, Schluetz F, Liu JQ (2008a) Molecular evidence for double maternal origins of the diploid hybrid Hippophae goniocarpa (Elaeagnaceae). Bot J Linn Soc 156:111–118CrossRefGoogle Scholar
  93. Wang AL, Zhang Q, Wan DS, Yang YZ, Liu JQ (2008b) Nine microsatellite DNA primers for Hippophae rhamnoides ssp sinensis (Elaeagnaceae). Conserv Genet 9:969–971CrossRefGoogle Scholar
  94. Wang B, Lin L, Ni Q, Su CL (2011a) Hippophae rhamnoides Linn. for treatment of diabetes mellitus: a review. J Med Plants Res 5:2599–2607Google Scholar
  95. Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci U.S.A. 106:3853–3858Google Scholar
  96. Wang H, Qiong LA, Sun K, Lu F, Wang Y, Song Z, Wu Q, Chen J, Zhang W (2010) Phylogeographic structure of Hippophae tibetana (Elaeagnaceae) highlights the highest microrefugia and the rapid uplift of the Qinghai-Tibetan Plateau. Mol Ecol 19:2964–2979CrossRefPubMedGoogle Scholar
  97. Wang Y, Jiang H, Peng S, Korpelainen H (2011b) Genetic structure in fragmented populations of Hippophae rhamnoides ssp. sinensis in China investigated by ISSR and cpSSR markers. Plant Syst Evol 295:97–107CrossRefGoogle Scholar
  98. Warnock M, Miskin D (2009) Sea buckthorn (Hippophae rhamnoides L): a review and its potential as a crop in Scotland. In: Singh VK, Govil JN (eds) Standardization of herbal/ayurvedic formations. Studium Press Llc, Houston, pp 257–272Google Scholar
  99. Weising K, Nybom H, Wolff K, Meyer W (1994) DNA Fingerprinting in Plants and Fungi. CRC Press, Boca RatonGoogle Scholar
  100. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U.S.A. 84:9054–9058Google Scholar
  101. Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving Quantitative Trait Loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909PubMedPubMedCentralGoogle Scholar
  102. Xu G, Li CY, Yao YN (2009) Proteomics analysis of drought stress-responsive proteins in Hippophae rhamnoides L. Plant Mol Biol Report 27:153–161CrossRefGoogle Scholar
  103. Yao YM, Tigerstedt PMA (1993) Isozyme studies of genetic diversity and evolution in Hippophae. Genet Resour Crop Evol 40:153–164CrossRefGoogle Scholar
  104. Yao YM, Tigerstedt PMA (1995) Geographical variation of growth rhytm, height, and hardiness, and their relations in Hippophaë rhamnoides. J Am Soc Hortic Sci 120:691–698Google Scholar
  105. Zhang SD, Soltis DE, Yang Y, Li DZ, Yi TS (2011) Multi-gene analysis provides a well-supported phylogeny of Rosales. Mol Phylogenet Evol 60:21–28 CrossRefPubMedGoogle Scholar
  106. Zhao C, Chen G, Wang Y, Korpelainen H, Li C (2007) Genetic variation of Hippophae rhamnoides populations at different altitudes in the Wolong Nature Reserve based on RAPDs. Chin J Appl Environ Biol 13:753–758Google Scholar
  107. Zubarev YA, Gunin A, Oderova EV (2014) Characteristics of Russian sea bukthorn (Hippophaë rhamnoides subsp. mongolica) varieties. In: Singh V (ed) Seabuckthorn (Hippophaë L.) a multipurpose wonder plant, vol IV: emerging trends in research and technologies. Daya Publishing House, Astral International Pvt. Ltd., New Dehli, pp 89–98Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Genetic EcologyInstitute of Botany, Academy of Sciences of Czech RepublicPruhoniceCzech Republic

Personalised recommendations