Chromosome Engineering for High Precision Crop Improvement

  • Harinder Kumar ChaudharyEmail author
  • Vineeta Kaila
  • Shoukat Ahmad Rather
  • Navdeep Singh Jamwal
  • Anila Badiyal
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 10)


Logarithmically increasing population and steadily changing climatic conditions have created a threatening situation of food insecurity worldwide and pose a challenge to breeders. In view of the narrow genetic background of the cultivated crop species, it has become imperative to broaden their genetic base by introgressing alien genes. However, monitoring the introgression(s) is indispensable for accelerated and high precision crop improvement. This chapter reveals the application of various innovative approaches like haploid inducer genes and chromosome elimination-mediated doubled haploidy breeding in barley, maize, wheat and potato required for the acceleration of breeding endeavours. It also covers the strategic chromosome engineering techniques needed for the alien chromatin introgression in wheat and further monitoring by use of novel molecular cytogenetic tools, including GISH and FISH for the targeted genetic upgradation with high precision.


Wheat Barley Wheat × maize Wheat × Imperata cylindrica Haploid inducer genes GISH FISH 



The authors are highly obliged to Prof. Yasuhiko Mukai, Osaka Kyoiku University, Japan and Dr. Trude Schwarzacher, Department of Biology, University of Leicester, UK, for extending their expertise in getting the resolution of certain results mentioned in this article.


  1. Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Singh H, Friebe B, Gill BS, Dhaliwal HS (2002) Ph I -induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127:377–382CrossRefGoogle Scholar
  2. Ahmad F, Comeau A (1991) A new intergeneric hybrid between Triticum aestivum L. and Agropyron fragile (Roth) Candargy: variation in A. fragile for suppression of the wheat Ph-Locus activity. Plant Breed 106:275–283CrossRefGoogle Scholar
  3. Aziz AN, Seabrook JEA, Tai GCC, de Jong H (1999) Screening diploid Solanum genotypes responsive to different anther culture conditions and ploidy assessment of anther-derived roots and plants. Am J Potato Res 76:9–16CrossRefGoogle Scholar
  4. Badiyal A, Chaudhary HK, Jamwal NS, Hussain W, Mahato A, Bhatt AK (2014) Interactive genotypic influence of triticale and wheat on their crossability and haploid induction under varied agroclimatic regimes. Cereal Res Commun 42(1):1–10CrossRefGoogle Scholar
  5. Barclay IR (1975) High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature 256:410–411CrossRefGoogle Scholar
  6. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363PubMedCrossRefGoogle Scholar
  7. Belling J, Blakeslee AF (1922) The assortment of chromosomes in triploid Daturas. Am Nat 56:339–346CrossRefGoogle Scholar
  8. Bennett MD, Finch RA, Barclay IR (1976) The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54:175–200CrossRefGoogle Scholar
  9. Blanco A, Perrone V, Simeone R (1988) Chromosome pairing variation in Triticum turgidum L. × Dasypyrum villosum (L.) Candargy hybrids and genome affinities. In: Proceedings of 7th international wheat genetics symposium, Cambridge, pp 63–67Google Scholar
  10. Budke B, Logan HL, Kalin JH, Zelivianskaia AS, Cameron McGuire W, Miller LL, Stark JM, Kozikowski AP, Bishop DK, Connell PP (2012) RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucl Acids Res 40(15):7347–7357PubMedPubMedCentralCrossRefGoogle Scholar
  11. Ceoloni C, Signore G, Ercoli L, Donini P (1992) Locating the alien chromatin segment in common wheat–Aegilops longissima mildew resistance transfers. Hereditas 116:239–245CrossRefGoogle Scholar
  12. Ceoloni C, Biagetti M, Ciaffi M, Forte P, Pasquini M (1996) Wheat chromosome engineering at the 4´ level: the potential of different alien gene transfers into durum wheat. Euphytica 89:87–97CrossRefGoogle Scholar
  13. Ceoloni C, Forte P, Gennaro A, Micali S, Carozza R, Bitti A (2005) Recent developments in durum wheat chromosome engineering. Cytogenet Genome Res 109:328–334PubMedCrossRefGoogle Scholar
  14. Chalyk ST (1999) Creating new haploid-inducing lines of maize. Maize Genet Coop Newslett 73:53–54Google Scholar
  15. Chalyk S, Bauman A, Daniel G, Eder J (2003) Aneuploidy as a possible cause of haploid induction in maize. Maize Genetic Coop Newslett 77:29–30Google Scholar
  16. Chase SS (1947) Techniques for isolating monoploid maize plants. J Bot 34:582Google Scholar
  17. Chase SS (1951) The monoploid method of developing inbred lines. In: Proceedings of 6th annual hybrid corn industry research conference. Illinois, Chicago, pp 29–30Google Scholar
  18. Chaudhary HK (2008a) Dynamics of wheat × Imperata cylindrica—a new chromosome elimination mediated system for efficient haploid induction in wheat. In: Appels R et al (eds) Proceedings of the 11th international wheat genetics symposium. University of Sydney Press, Sydney, pp 647–650Google Scholar
  19. Chaudhary HK (2008b) Dynamics of doubled haploidy breeding and molecular cytogenetic approaches in bread wheat. In: Taniguchi K, Zhang X (eds) Focus on north–west Himalayan regions. Advances in chromosome science, vol 3(2). The Society of Chromosome Research, Hiroshima, pp 67–69Google Scholar
  20. Chaudhary HK (2012) New frontiers in chromosome engineering for enhanced and high precision crop improvement. In: Proceedings of national seminar on plant cytogenetics: new approaches, Department of Botany, Punjabi University, Patiala, 23–24, pp 35–36Google Scholar
  21. Chaudhary HK (2013) New frontiers in chromosome elimination-mediated doubled haploidy breeding for accelerated and high precision genetic upgradation in wheat. In: Proceedings of international Triticeae mapping initiative and plant & animal genome XXI Conference, San Diego, pp 12–16, p 26Google Scholar
  22. Chaudhary HK, Schwarzacher T, Heslop-Horrison  JS (2004) Detection and characterization of rye (Secale cereale) chromatin introgression into wheat (Triticum aestivum) through fluorescence in situ hybridization. Report submitted to Commonwealth Commission, London. p 1–6Google Scholar
  23. Chaudhary HK, Singh S, Sethi GS (2002) Interactive influence of wheat and maize genotypes on haploid induction in winter × spring wheat hybrids. J Genet Breed 56:259–266Google Scholar
  24. Chaudhary HK, Sethi GS, Singh S, Pratap A, Sharma S (2005) Efficient haploid induction in wheat by using pollen of Imperata cylindrica. Plant Breed 124:96–98CrossRefGoogle Scholar
  25. Chaudhary HK, Tayeng T, Kaila V, Rather SA (2013a) Use of asynchrony in flowering for easy and economical polyhaploid induction in wheat following Imperata cylindrica- mediated chromosome elimination approach. Plant Breed 132(2):155–158CrossRefGoogle Scholar
  26. Chaudhary HK, Tayeng T, Kaila V, Rather SA (2013b) Enhancing the efficiency of wide hybridization mediated chromosome engineering for high precision crop improvement with special reference to wheat × Imperata cylindrica system. The Nucleus 56:7–14CrossRefGoogle Scholar
  27. Cherkaoui S, Lamsaouri O, Chlyah A, Chlyah H (2000) Durum wheat × maize crosses for haploid wheat production: influence of parental genotypes and various experimental factors. Plant Breed 119:31–36CrossRefGoogle Scholar
  28. Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Dhaliwal HS (2007) Introgression of leaf rust and stripe rust resistance genes from Aegilops umbellulata to hexaploid wheat through induced homoeologous pairing. Wheat Product Stress Environ Dev Plant Breed 12:83–90CrossRefGoogle Scholar
  29. Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Prashar M, Dhaliwal HS (2008) Transfer of leaf rust and stripe rust resistance from Aegilops umbellulata Zhuk. to bread wheat (Triticum aestivum L.). Genet Res Crop Evol 55:849–859CrossRefGoogle Scholar
  30. Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93:381–382CrossRefGoogle Scholar
  31. Conner RL, Whelan ED, Laroche A, Thomas JB (1993) Reaction of alien chromosome substitution and addition lines of hard red spring wheat to common root rot and black point. Genome 36(1):173–180PubMedCrossRefGoogle Scholar
  32. David JL, Dusautoir JC, Raynauld C, Roumet P (1999) Heritable variation in the ability to produce haploid embryos via pollination with maize and embryo rescue in durum wheat. Genome 42:338–342CrossRefGoogle Scholar
  33. Davies DR (1974) Chromosome elimination in inter-specific hybrids. Heredity 32:267–270CrossRefGoogle Scholar
  34. De Maine MJ (2003) Potato haploid technologies. In: Maluszynski M et al (eds) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 241–247CrossRefGoogle Scholar
  35. Dhaliwal HS, Gill BS, Waines JG (1977) Analysis of induced homoeologous pairing in a ph mutant wheat × rye hybrid. J Hered 68:206–209Google Scholar
  36. Dhiman R, Rana V, Chaudhary HK (2012) Himalayan maize—potential pollen source for maize mediated system of chromosome elimination approach in DH breeding of bread wheat. Cereal Res Commun 40:246–255CrossRefGoogle Scholar
  37. Dirks R, van Dun K, de Snoo CB, van den Berg M, Lelivelt CL, Voermans W, Woudenberg L, de Wit JP, Reinink K, Schut JW, van der Zeeuw E, Vogelaar A, Freymark G, Gutteling EW, Keppel MN, van Drongelen P, Kieny M, Ellul P, Touraev A, Ma H, de Jong H, Wijnker E (2009) Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J 7:837–845PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dong F, Tek AL, Frasca ABL, McGrath JM, Wielgus SM, Helgeson JP, Jiang J (2005) Development and characterization of potato- Solanum brevidens chromosomal addition/substitution lines. Cytogenet Genome Res 109:368–372PubMedCrossRefGoogle Scholar
  39. Dundas IS, Anugrahwati DR, Verlin DC, Park RF, Bariana HS (2007) New sources of rust resistance from alien species: meliorating linked defects and discovery. Aust J Agric Res 58:545–549CrossRefGoogle Scholar
  40. Dupre A, Boyer-Chatenet L, Sattler RM, Modi AP, Lee JH, Nicolette ML, Kopelovich L, Jasin M, Raer R, Paull TT, Gautier J (2008) A forward chemical genetic screen reveals an inhibitor of the mre11-rad50-nbs1 complex. Nat Chem Biol 4:119–125PubMedPubMedCentralCrossRefGoogle Scholar
  41. Dvorak J, Deal KR, Luo MC (2006) Discovery and mapping of wheat Ph1 suppressors. Genetics 174:17–27PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fernandez-Silva I, Moreno E, Eduardo I, Arus P, Alvarez JM, Monforte AJ (2009) On the genetic control of heterosis for fruit shape in melon (Cucumis melo L.). J Hered 100:229–235PubMedCrossRefGoogle Scholar
  43. Finch RA (1983) Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma 88:386–393CrossRefGoogle Scholar
  44. Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375PubMedCrossRefGoogle Scholar
  45. Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Brub C, Kumlehn J, Matzk F, Houben A (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17:2431–2438Google Scholar
  46. Gernand D, Rutten T, Pickering R, Houben A (2006) Elimination of chromosomes in Hordeum vulgare × H. bulbosum crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatinization. Cytogenet Genome Res 114:169–174PubMedCrossRefGoogle Scholar
  47. Gill BS, Chen PO (1987) Role of cytoplasm specific introregression in the evolution of polyploidy wheats. Proc Natl Acad Sci USA 84:6800–6804PubMedPubMedCentralCrossRefGoogle Scholar
  48. Giorgi B, Barbera F (1981) Increase of homoeologous pairing in hybrids between a ph mutant of T. turgidum L. var. durum and two tetraploid species of Aegilops kotschyi and Ae. cylindrica. Cereal Res Commun 9:205–211Google Scholar
  49. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497CrossRefGoogle Scholar
  50. Gupta SB (1969) Duration of mitotic cycle and regulation of DNA replication in Nicotiana plumbaginifolia and a hybrid derivative of N. tabacum showing chromosome instability. Can J Genet Cytol 11:133–142CrossRefGoogle Scholar
  51. Gustafsson  A, Hagberg A, Lundqvist U (1960) The induction of early mutants in Bonus barley. Hereditas 46:675–699Google Scholar
  52. Hagberg A, Hagberg G (1980) High frequency of spontaneous haploids in the progeny of an induced mutation barley. Hereditas 93:341–343CrossRefGoogle Scholar
  53. Hagberg G, Hagberg A (1981) Haploidy initiater gene in barley. In: Barley Genetics IV proceedings of 4th international barley genetics symposium. Edinburg, pp 686–689Google Scholar
  54. Hagberg A, Hagberg G (1987) Production of spontaneously doubled haploids in barley using a breeding system with marker genes and the “hap”-gene. Biologisches Zentralblatt 106:53–58Google Scholar
  55. Ho KM, Kasha KJ (1975) Genetic control of chromosome elimination during haploid formation in barley. Genetics 81:263–275PubMedPubMedCentralGoogle Scholar
  56. Inagaki MN, Mujeeb-Kazi A (1995) Comparison of polyhaploid production frequencies in crosses of hexaploid wheat with maize, pearl millet and sorghum. Breed Sci 45:157–161Google Scholar
  57. Inagaki MN, Tahir M (1991) Efficient production of wheat haploids through intergeneric crosses. TARC Newslett 2:4Google Scholar
  58. Inagaki MN, Varughese G, Rajaram S, van Ginkel M, Mujeeb-Kazi A (1998) Comparison of bread wheat lines selected by doubled haploid, single-seed descent and pedigree selection methods. Theor Appl Genet 97:550–556CrossRefGoogle Scholar
  59. Inagkai MN, Tahir M (1990) Comparison of haploid production frequencies in wheat varieties crossed with Hordeum bulbosum L. and maize. Jpn J Breed 40:209–216CrossRefGoogle Scholar
  60. Ishida T, Takizawa Y, Kainuma T, Inoue J, Mikawa T, Shibata T, Suzuki H, Tashiro S, Kurumizaka H (2009) DIDS, a chemical compound that inhibits RAD51-mediated homologous pairing and strand exchange. Nucleic Acids Res 37:3367PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ishii T, Ueda T, Tanaka H, Tsujimoto H (2010) Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells. Chromosome Res 18:821–831PubMedCrossRefGoogle Scholar
  62. Islam AKMR, Shepherd KW (1991) Alien genetic variation in wheat. In: Gupta PK, Tsuchiya T (eds) Chromosome engineering in plants: genetics, breeding, evolution, Part A. Elsevier, Amsterdam, pp 291–319CrossRefGoogle Scholar
  63. Islam AKMR, Shehpherd KW, Sparrow DHB (1975) Addition of individual barley chromosomes to wheat. In: Gaul H (ed) Barley Genetics III. Proceedings of 3rd international barley genetics symposium, Garching, pp 260–270Google Scholar
  64. Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46:161  Google Scholar
  65. Jacobsen E, Ramanna MS (1994) Production of monohaploids of Solanum tuberosum L. and their use in genetics, molecular biology and breeding. In: Breadshaw JE, Mckay GR (eds) Potato genetics. CAB International, Wallingford, pp 155–170Google Scholar
  66. Jalani BS, Moss JP (1980) The site of action of the crossability genes (Kr1, Kr2) between Triticum and Secale in pollen germination, pollen tube growth, and number of pollen tubes. Euphytica 29:571–579CrossRefGoogle Scholar
  67. Jauhar PP, Almouslem AB (1998) Production and analyses of some intergeneric hybrids between durum wheat and Thinopyrum species. In: Jaradat AA (ed) Triticeae III. Scientific Publishers Inc., New Hampshire, pp 119–126Google Scholar
  68. Jauhar PP, Chibbar RN (1999) Chromosome-mediated and direct gene transfers in wheat. Genome 42:570–583CrossRefGoogle Scholar
  69. Jauhar PP, Peterson TS, Xu SS (2009) Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome 52:467–483PubMedCrossRefGoogle Scholar
  70. Jeberson MS (2010) Physical mapping of some triticale × wheat derived rye chromatin introgressed wheat recombinants through fluorescent in situ hybridization. Ph. D. thesis. CSK HP Agricultural University, Palampur, Himachal Pradesh, p 127Google Scholar
  71. Jeberson MS, Chaudhary HK, Kishore N (2012) Molecular cytogenetic studies for detection and characterization of alien chromosome/chromatin introgressions in triticale × wheat derived wheat stable lines. In: Proceedings of national symposium on plant cytogenetics: new approaches, Punjabi University, Patiala, p 99Google Scholar
  72. Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chevre AM (2003) Pr Bn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653PubMedPubMedCentralGoogle Scholar
  73. Ji Y, Chetelat RT (2003) Homoeologous pairing and recombination in Solanum lycopersicoides monosomic addition and substitution lines of tomato. Theor Appl Genet 106:979–989PubMedGoogle Scholar
  74. Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kasha KJ, Kao KN (1970) High frequency haploid production in barley (H. Vulgare L.). Nature 225:874–876PubMedCrossRefGoogle Scholar
  76. Kermicle JL (1969) Androgenesis conditioned by a mutation in maize. Science 166:1422–1424PubMedCrossRefGoogle Scholar
  77. Khrustaleva LI, de Melo PE, van Heusden AW, Kik C (2005) The integration of recombination and physical maps in a large-genome monocots using haploid genome analysis in a trihybrid Allium population. Genetics 169:1673–1685PubMedPubMedCentralCrossRefGoogle Scholar
  78. Khush GS (1973) Cytogentics of aneuploids. Academic Press, New York, pp 178–208Google Scholar
  79. King IP, Laurie DA (1993) Chromosome damage in early embryo and endosperm development in crosses involving the preferentially transmitted 4Sl chromosome of Aegilops sharonensis. Heredity 70:52–59CrossRefGoogle Scholar
  80. Kisana NS, Nkongolo KK, Quick JS, Johnson DL (1993) Production of doubled haploids by anther culture and wheat × maize method in a wheat breeding programme. Plant Breed 110:96–102CrossRefGoogle Scholar
  81. Kishore N, Chaudhary HK, Chahota RK, Kumar V, Sood SP, Jeberson S, Tayeng T (2011) Relative efficiency of the maize and Imperata cylindrica -mediated chromosome elimination approaches for induction of haploids of wheat-rye derivatives. Plant Breed 130:192–194CrossRefGoogle Scholar
  82. Komeda N, Chaudhary HK, Mukai Y (2007) Cytological evidence for chromosome elimination in wheat × Imperata cylindrica hybrids. Genes Genetic Syst 82:241–248CrossRefGoogle Scholar
  83. Krolow KD (1970) Investigations on compatibility between wheat and rye. Z. Pflanzenzuchtung 64:44–72Google Scholar
  84. Kruse A (1973) Hordeum × Triticum hybrids. Hereditas 73:157–161CrossRefGoogle Scholar
  85. Lange W (1971) Crosses between Hordeum vulgare L. and H. bulbosum L. 1.Production, morphology and meiosis of hybrids, haploids and dihaploids. Euphytica 20:14–29CrossRefGoogle Scholar
  86. Lashermes P, Beckert M (1988) A genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theor Appl Genet 76:405–410PubMedGoogle Scholar
  87. Laurie DA, Bennett MD (1986) Wheat × maize hybridization. Can J Genet Cytol 28:313–316CrossRefGoogle Scholar
  88. Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat × maize crosses. Theor Appl Genet 76:393–397PubMedCrossRefGoogle Scholar
  89. Laurie DA, Bennett MD (1989) The timing of chromosome elimination in hexaploid wheat × maize crosses. Genome 32:953–961CrossRefGoogle Scholar
  90. Laurie DA, Reymondie S (1991) High frequencies of fertilization and haploid seedling production in crosses between commercial hexaploid wheat varieties and maize. Plant Breed 106:182–189CrossRefGoogle Scholar
  91. Linde-Laursen I, von Bothmer R (1999) Orderly arrangement of the chromosomes within barley genomes of chromosome-eliminating Hordeum lechleri × barley hybrids. Genome 42:225–236CrossRefGoogle Scholar
  92. Lukaszewski AJ, Xu X (1995) Screening large populations of wheat hybrids by C-banding. Cereal Res Commun 23:9–13Google Scholar
  93. Lukaszewski AJ, Rybka K, Korzun V, Malyshev SY, Lapinski B, Whitkus R (2004) Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47:36–45PubMedCrossRefGoogle Scholar
  94. Lussern M, Parisi C, Plan D, Rodríguez-Cerezo E (2011) Drivers & constraints. New plant breeding techniques State-of-the-art and prospects for commercial development. Luxembourg publication, European Union, pp 45–46Google Scholar
  95. Mago R, Zhang P, Bariana HS, Verlin DC, Bansal UK (2009) Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor Appl Genet 119:1441–1450PubMedCrossRefGoogle Scholar
  96. Maruthachalam R, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615CrossRefGoogle Scholar
  97. Matzk F, Mahn A (1994) Improved techniques for haploid production in wheat using chromosome elimination. Plant Breed 113:125–129CrossRefGoogle Scholar
  98. Mendiburu AO, Peloquin SJ, Mok DWS (1974) Potato breeding with haploids and 2n gametes. In: Kasha KJ (ed) Haploids in higher plants. Guelph University Press, Guelph, ON, pp 249–259Google Scholar
  99. Miller TE, Reader SM, Gale MD (1983) The effect of homoeologous group 3 chromosomes on chromosome pairing and crossability in Triticum aestivum. Can J Genet Cytol 25:634–641CrossRefGoogle Scholar
  100. Mochida K, Tsujimoto H, Sasakuma T (2004) Confocal analysis of chromosome behaviour in wheat × maize zygotes. Genome 47:199–205PubMedCrossRefGoogle Scholar
  101. Montelongo-Escobedo H, Rowe PR (1969) Haploid induction in potato: cytological basis for the pollinator effect. Euphytica 18:116–123Google Scholar
  102. Morozumi Y, Takizawa Y, Takaku M, Kurumizaka H (2009) Human PSF binds to RAD51 and modulates its homologous-pairing and strand-exchange activities. Nucleic Acids Res 37:4296–4307PubMedPubMedCentralCrossRefGoogle Scholar
  103. Morshedi AR, Darvey NL (1995) High frequency of embryos in wheat × maize crosses. SABRAO J 27:17–22Google Scholar
  104. Nakamura C, Tsuchiya T (1982) Cytogentics of alien addition trisomics in sugar beets. I. Meiotic chromosome behaviour in nematode resistant trisomics. Biologisches Zentralblatt 101:227–240Google Scholar
  105. Naranjo T, Roca A, Giráldez R, Goicoechea PG (1988) Chromosome pairing in hybrids of ph1b mutant wheat with rye. Genome 30:639–646CrossRefGoogle Scholar
  106. Peng JH, Lapitan NLV (2005) Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics 5:80–96PubMedCrossRefGoogle Scholar
  107. Pratap A, Chaudhary HK (2007) Genetic studies on the effect of triticale × wheat F1s and maize genotypes on haploid induction following wheat × maize system. J Genet Breed 60:119–124Google Scholar
  108. Pratap A, Sethi GS, Chaudhary HK (2005) Relative efficiency of different Gramineae genera for haploid induction in triticale and triticale × wheat hybrids through chromosome elimination technique. Plant Breed 124:147–153CrossRefGoogle Scholar
  109. Pratap A, Sethi GS, Chaudhary HK (2006) Relative efficiency of anther culture and chromosome elimination technique for haploid induction in triticale × wheat and triticale × triticale hybrids. Euphytica 150:339–345CrossRefGoogle Scholar
  110. Randolph LF (1932) Some effects of high temperature on polyploidy and other variations in maize. Genetics 18:222–229Google Scholar
  111. Rather SA, Chaudhary HK, Kaila V (2014) Proportional contribution and potential of maternal and paternal genotypes for polyhaploid induction in wheat × Imperata cylindrica chromosome elimination approach. Cereal Res Commun 42(1):19–26Google Scholar
  112. Riley R (1966) Cytogenetics and wheat breeding. Contemporary. Agriculture 11–12:107–117Google Scholar
  113. Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715CrossRefGoogle Scholar
  114. Riley R, Chapman V (1967) The inheritance in wheat of crossability with rye. Genet Res 9:259–267CrossRefGoogle Scholar
  115. Riley R, Chapman V, Johnson R (1968) Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217:383–384CrossRefGoogle Scholar
  116. Rine J, Herskowitz I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116:9–22PubMedPubMedCentralGoogle Scholar
  117. Rogowsky PM, Sorrells ME, Shepherd KW, Langridge P (1993) Characterization of wheat-rye recombinants with RFLP and PCR probes. Theor Appl Genet 85:1023–1028PubMedCrossRefGoogle Scholar
  118. Rokka VM (2003) Anther culture through direct embryogenesis in a genetically diverse range of potato (Solanum) species and their interspecic and intergeneric hybrids. In: Maluszynski M et al (eds) Doubled haploid production in crop plants. A manual. Kluwer, Dordrecht, pp 235–245CrossRefGoogle Scholar
  119. Rokka VM (2009) Potato haploids and breeding. In: Touraev A et al (eds) Advances in haploid production in higher plants. Springer Science + Business Media B.V, Germany, pp 199–208CrossRefGoogle Scholar
  120. Rokka VM, Pietila L, Pehu E (1996) Enhanced production of dihaploid lines via anther culture of tetraploid potato (Solanum tuberosum L. ssp. tuberosum) clones. Am J Potato Res 73:1–12CrossRefGoogle Scholar
  121. Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946PubMedPubMedCentralCrossRefGoogle Scholar
  122. Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA 108:498–505CrossRefGoogle Scholar
  123. Sarkar KR, Pandey A, Gayen P, Mandan JK, Kumar R, Sachan JKS (1994) Stabilization of high haploid inducer lines. Maize Genet Coop Newslett 68:64–65Google Scholar
  124. Schneerman MC, Charbonneau M, Weber DF (2000) A survey of ig containing materials. Maize Genet Coop Newslett 74:92–93Google Scholar
  125. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324Google Scholar
  126. Schwarzacher T, Ali N, Chaudhary HK, Graybosch R, Kapalande HV, Kinski E, Heslop-Harrison JS (2011) Fluorescent in situ hybridization as a genetic technology to analyzing chromosomal organization of alien wheat recombinant lines. IAEA- TECDOC-1664: physical mapping technologies for the identification and characterization of mutated genes to crop quality. IAEA TECDOC 1664 Subject Classification: 0203-Mutation plant breeding. IAEA, Vienna. ISBN 978-92-0- 119610-1 ISSN 1011-4298Google Scholar
  127. Sears ER (1952) Misdivision of univalents in common wheat. Chromosoma 4:535–550PubMedCrossRefGoogle Scholar
  128. Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Sympos Biol 9:1–22Google Scholar
  129. Sears ER (1972) Chromosome engineering in wheat. In: Stadler genetics symposium 4, University of Missouri, Columbia, pp 23–38Google Scholar
  130. Sears ER (1973) Agropyron- wheat transfers induced by homoeologous pairing. In: Sears ER, Sears LMS (eds) Proceedings of 4th international wheat genetics symposium. Columbia, Missouri, pp 191–199Google Scholar
  131. Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19:585–593CrossRefGoogle Scholar
  132. Sears ER (1981) Transfer of alien genetic material to wheat. In: Evans LT, Peacock WJ (eds) Wheat science-today and tomorrow. Cambridge University Press, Cambridge, pp 75–89Google Scholar
  133. Sears ER (1982) A wheat mutation conditioning an intermediate level of homoeologous pairing. Can J Genet Cytol 24:715–719CrossRefGoogle Scholar
  134. Shaharuddin NA, Yuanhuai H, Hongying L, Grierson D (2006) The mechanism of graft transmission of sense and antisense gene silencing in tomato plants. FEBS Lett 580:6579–6586PubMedCrossRefGoogle Scholar
  135. Sharma D, Knott DR (1966) The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143CrossRefGoogle Scholar
  136. Sharma S, Sethi GS, Chaudhary HK (2005) Influence of winter and spring wheat genetic backgrounds on haploid induction parameters and trait correlations in the wheat × maize system. Euphytica 144:199–205CrossRefGoogle Scholar
  137. Shatskaya OA, Zabirova ER, Shcherbak VS, Chumak MV (1994) Mass induction of maternal haploids in corn. Maize Genet Coop Newslett 68:51Google Scholar
  138. Singh AK, Stalker HT, Moss JP (1991) Cytogenetics and use of alien genetic variation in groundnut improvement. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution, Part B. Elsevier, Amsterdam, pp 65–78Google Scholar
  139. Singh S, Sethi GS, Chaudhary HK (2004) Differential responsiveness of winter and spring wheat genotypes to maize-mediated production of haploids. Cereal Res Commun 32:201–207Google Scholar
  140. Sitch LA, Snape JW, Firman SJ (1985) Intra chromosomal mapping of crossability genes in wheat (Triticum aestivum). Theor Appl Genet 70:309–314PubMedCrossRefGoogle Scholar
  141. Snape JW, Simpson E, Parker BB (1986) Criteria for the selection and use of doubled haploid systems in cereal breeding programs. In: Horn W et al (eds) Genetic manipulation in plant breeding. Walter de Gruiter, New York, pp 217–229Google Scholar
  142. Stephan S (1969) Haploid barley from crosses of Hordeum bulbosum (2x) × Hordeum vulgare (2x). Can J Genet Cytol 11:602–608CrossRefGoogle Scholar
  143. Subrahmanyam NC, Kasha KJ (1973) Selective chromosomal elimination during haploid formation in barley following interspecific hybridization. Chromosoma 42:111–125CrossRefGoogle Scholar
  144. Suenaga K (1994) Doubled haploid system using the intergeneric crosses between wheat (Triticum aestivum) and maize (Zea mays). Bull Natl Inst Agrobiol Res 9:83–139Google Scholar
  145. Suenaga K, Nakajima K (1989) Efficient production of haploid wheat (Triticum aestivum) through crosses between Japanese wheat and maize (Zea mays). Plant Cell Rep 8:263–266PubMedCrossRefGoogle Scholar
  146. Takaku M, Kainuma T, Ishida-Takaku T, Ishigami S, Suzuki H, Tashiro S, van Soest RW, Nakao Y, Kurumizaka H (2011) Halenaquinone, a chemical compound that specifically inhibits the secondary DNA binding of RAD51. Genes Cells 16(4):427–436PubMedCrossRefGoogle Scholar
  147. Tayeng T, Chaudhary HK, Kishore N (2012) Enhancing doubled haploid production effi ciency in wheat (Triticum aestivum L. em. Thell) by in vivo colchicine manipulation in Imperata cylindrica - mediated chromosome elimination approach. Plant Breed 131:574–578CrossRefGoogle Scholar
  148. Valkoun JJ (2001) Wheat pre-breeding using progenitors. Euphytica 119:17–23CrossRefGoogle Scholar
  149. Wijnker E, Dun K, de Snoo CB, Lelivelt CL, Keurentjes JJ, Naharudin NS, Ravi M, Chan SW, de Jong H, Dirks R (2012) Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant. Nat Genet 44:467–470Google Scholar
  150. Wall AM, Riley R, Chapman V (1971) Wheat mutants permitting homoeologous meiotic chromosomes pairing. Genetics Res 18:311–328CrossRefGoogle Scholar
  151. Wedzony M, Röber F, Geiger HH (2004) Chromosome elimination observed in selfed progenies of maize inducer line RWS. In: VII. Intern. Congress on Sexual Plant Reproduction. Maria Curie-Sklodowska University Press, Lublin, p 173Google Scholar
  152. Wijnker E, de Jong H (2008) Managing meiotic recombination in plant breeding. Trends Plant Sci 13:640–646PubMedCrossRefGoogle Scholar
  153. Wijnker E, Deurhof L, Jose B, de Snoo CB, Blankestijn H, Becker F, Ravi M, Chan SWL, van Dun K, Lelivelt CL, de Jong H, Dirks H, Keurentjes JJ (2014) Hybrid recreation by reverse breeding in Arabidopsis thaliana. Nat Protoc 9:761–772PubMedCrossRefGoogle Scholar
  154. Wu L, Zheng C, Jia Z, Yuan J (1989) Chromosome pairing in hybrids of ph1b and nulli5B-tetra5D wheat with rye and Agrotricum. Plant Breed 102:281–285Google Scholar
  155. Yamamoto M, Mukai Y (1989) Application of fluorescence in situ hybridization to molecular cytogenetics of wheat. Wheat Inf Serv 69:30–32Google Scholar
  156. Yu MQ, Jaheir J, Person-Dedryver F (1995) Studies on the effect of Ph1b gene on the F1, BC1, BC2, BC3 crosses between wheat and Ae. variabilis and the transfer of cereal root knot nematode (M. naasi) resistance. Acta Agronomica Sinica 21(2):136–144Google Scholar
  157. Zenketler M, Straub J (1979) Cyto-embryological study on the process of fertilization and the development of haploid embryo of Triticum aestivum (2n = 42) after crossing with Hordeum bulbosum (2n = 14). Z Pflanzenzuchtung 82:36–44Google Scholar
  158. Zenkteler M, Nitzsche W (1984) Wide hybridization experiments in cereals. Theor Appl Genet 68:311–316PubMedCrossRefGoogle Scholar
  159. Zhang Z, Qiu F, Liu Y, Ma K, Li K, Xu S (2008) Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.). Plant Cell Rep 27:1851–1860PubMedCrossRefGoogle Scholar
  160. Zheng YL, Luo MC, Yen C, Yang JL (1992) Chromosome location of a new crossability gene in common wheat. Wheat Inf Serv 75:36–40Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Harinder Kumar Chaudhary
    • 1
    Email author
  • Vineeta Kaila
    • 1
  • Shoukat Ahmad Rather
    • 1
  • Navdeep Singh Jamwal
    • 1
  • Anila Badiyal
    • 1
  1. 1.Molecular Cytogenetics and Tissue Culture Lab, Department of Crop ImprovementCSK Himachal Pradesh Agricultural UniversityPalampurIndia

Personalised recommendations