Skip to main content

Physiological Ecology of Psammophytic and Halophytic Plant Species from Coastal Plains in Northern South America

  • Chapter
  • First Online:

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 48))

Abstract

Coastal plains of all tropical and subtropical latitudes are the habitat for a number of highly specialized plants able to establish in a range of sandy to clayey soils, submitted to periodical flooding from rainfall and tides, tolerant to large variations of salinity of soils interstitial water, withstanding coastal winds and sea-salt spray, and submitted to yearlong high solar irradiation and day temperatures. In northern South America semi-arid climates predominate in the southern Caribbean coasts from 10 to 15° N, an area that includes from the Goajira peninsula in Colombia to the Paria Peninsula in eastern Venezuela, and most southern Caribbean islands. The functional properties of mangroves (Laguncularia racemosa, Avicennia germinans) and associated halophytes (Conocarpus erectus, Sesuvium portulacastrum and Batis maritima) in seasonal arid coasts reveal the impact of highly seasonal distribution of rainfall affecting photosynthesis and leaf osmotic relations. The soil-plant nutritional relationships of a number of commonly occurring coastal species allowed the characterization of psammophytes and halophytes, based on the Na/K, and Ca/Mg ratios, and their preferential absorption of K over Na. Carbon 13 isotopic analyses showed the C4 species were well represented within the selected species (Sporobolus virginicus, Atriplex oestophora, Euphorbia mesembryathemifolia) but this photosynthetic metabolism is not the most common. Natural abundance of 15N indicates that sources of N are enriched in the heavier isotope suggesting that these coastal systems are limited by P but not by N. Mycorrhizal associations were common in most species but intensity of colonization was generally low. The occurrence of mycorrhizal associations in true halophytes remains to be assessed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alarcón C, Cuenca G (2005) Arbuscular mycorrhizas in coastal sand dunes of the Paraguaná Peninsula, Venezuela. Mycorrhiza 16:1–9

    Article  PubMed  Google Scholar 

  • Albert R (1982) Halophyten. In: Kinzel H (ed) Pflanzenökologie und Mineralstoffwechsel. Ulmer Verlag, Stuttgart, pp 32–215

    Google Scholar 

  • Aristeguieta L (1956) Vegetación. In: El Archipiélago de los Roques y la Orchila. Sociedad de Ciencias Naturales La Salle. Editorial Sucre, Caracas, p 257

    Google Scholar 

  • Bailey HP (1979) Chapter 3: Semi-arid climates: their definition and distribution. In: Hall AE, Cannell GH, Lawton HW (eds) Agriculture in semi-arid environments, Ecological studies 34. Springer, Berlin, pp 73–97

    Chapter  Google Scholar 

  • Bell HL, O′Leary JW (2003) Effects of salinity on growth and cation accumulation of Sporobolus virginicus (Poaceae). Am J Bot 90:1416–1424

    Article  PubMed  Google Scholar 

  • Biebl R, Kinzel H (1965) Blattbau und Salzhaushalt von Laguncularia racemosa (L.) Gaertn.f. und anderer Mangrovebäume auf Puerto Rico. Österr Botsch Zeitschrift 112:56–93

    Article  CAS  Google Scholar 

  • Breckle SW (2002) Salinity, halophytes and salt affected natural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Kluwer Academic Publishers, Dordrecht, pp 53–77

    Google Scholar 

  • Camacho R, Salazar S, González L, Pacheco H, Suárez C (2011) Caracterización geomorfológica de las dunas longitudinales del Istmo de Médanos, estado Falcón, Venezuela. Investig Geogr Bol Inst Geog UNAM 76:7–19

    Google Scholar 

  • Castillo S, Popma J, Moreno-Casasola P (1991) Coastal sand dune vegetation of Tabasco and Campeche, Mexico. J Veg Sci 2:73–88

    Article  Google Scholar 

  • Cintron G, Lugo AE, Pool DJ, Morris G (1978) Mangroves of arid environments in Puerto Rico and adjacent islands. Biotropica 10:110–121

    Article  Google Scholar 

  • Collander R (1941) Selective absorption of cations by higher plants. Plant Physiol 16:691–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colonnello G (1986) Comunidades vegetales de la Isla La Blanquilla (Dep. Federal) Venezuela. Memoria de la Sociedad de Ciencias Naturales La Salle 66:193–226

    Google Scholar 

  • Cramer GR (2002) Sodium-calcium interactions under salinity stress. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Kluwer Academic Publishers, Dordrecht, pp 205–227

    Google Scholar 

  • Cumana-Campos LJ (1999) Caracterización de las formaciones vegetales de la Península de Araya, Estado Sucre, Venezuela. Saber (Universidad de Oriente, Venezuela) 11:7–16

    Google Scholar 

  • Cumana-Campos LJ, Prieto Arcas A, Ojeda Crespo YG (2000) Flórula de la Laguna de Chacopata, Península de Araya, Estado Sucre, Venezuela. Saber (Universidad De Oriente, Venezuela) 12:25–33

    Google Scholar 

  • Ellenberg L (1978) Coastal types of Venezuela – an application of coastal classifications. Zeitschrift fuer Geomorphologie 22:439–456

    Google Scholar 

  • Ellenberg L (1985) Venezuela. In: Bird ECF, Schwartz ML (eds) The world′s coastline. Van Nostrand Reinhold Co, New York, pp 105–114

    Google Scholar 

  • Farquhar GD, O′Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Fernández del Valle A, Ortega M F (1984) Vegetación del Archipiélago Los Testigos. Memoria de la Sociedad de Ciencias Naturales La Salle 44:37–53

    Google Scholar 

  • García M, Jáuregui D, Medina E (2008) Adaptaciones anatómicas foliares en especies de angiospermas que crecen en las zonas costeras del Estado Falcón (Venezuela). Acta Bot Venezuelica 31:291–306

    Google Scholar 

  • Garcia-Benavides J, Lopez-Diaz J (1970) Fórmula para el cálculo de la evapotranspiración potencial adaptada al trópico (15 N-15 S). Agronomia Trop 20:335–345

    Google Scholar 

  • González V (2007) La vegetación de la Isla de Margarita y sus interrelaciones con el ambiente físico. Memoria de la Sociedad de Ciencias Naturales La Salle 167:131–161

    Google Scholar 

  • Harshberger JW (1908) The comparative leaf structure of the sand dune plants of Bermuda. Proc Am Philos Soc 47:97–110

    Google Scholar 

  • Herrmann R (1970) Las causas de la sequía climática en la región costanera de Santa Marta Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 13(52):479–489

    Google Scholar 

  • Holdridge LR (1959) Simple method for determining potential evapotranspiration from temperature data. Science 130:572

    Article  Google Scholar 

  • Huber O, Alarcón C (1988) Mapa de vegetación de Venezuela. República de Venezuela/Ministerio del Ambiente y de los Recursos Naturales Renovables, Caracas

    Google Scholar 

  • Huber O, Riina R (1997) Glosario Fitoecológico de las Américas, vol 1: América del Sur, Paises Hispanoparlantes, vol 1. UNESCO, Caracas (Venezuela)

    Google Scholar 

  • Kadereit G, Mavrodiev EV, Zacharias EH, Sukhorukov AP (2010) Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. Am J Bot 97:1664–1687

    Google Scholar 

  • Kinzel H (1989) Calcium in the vacuoles and cell walls of plant tissues. Flora 182:99–125

    Google Scholar 

  • Lahey JF (1973) On the origin of the dry climate in northern South America and the southern caribbean. In: Amiran DHK, Wilson AW (eds) The coastal deserts – their natural and human environments. The University of Arizona Press, Tucson, pp 75–91

    Google Scholar 

  • Lasser T, Vareschi V (1957) La vegetación de los Médanos de Coro. Bol Soc Venez Cienc Nat 17:223–272

    Google Scholar 

  • Lemus-Jiménez JL, Ramírez N (2002) Fenología reproductiva en tres tipos de vegetación de la planicie costera de la península de Paraguaná, Venezuela. Acta Cient Venez 53:266–278

    PubMed  Google Scholar 

  • Lemus-Jiménez JL, Ramírez N (2003) Polinización y polinizadores en la vegetación de la planicie costera de Paraguaná, Estado Falcón, Venezuela. Acta Cient Venez 54:97–114

    PubMed  Google Scholar 

  • Lugo AE, Medina E, Cuevas E, Cintrón G, Laboy Nieves EN, Schäffer-Novelly Y (2007) Ecophysiology of a fringe mangrove forest in Jobos Bay, Puerto Rico. Caribb J Sci 43:200–219

    Article  Google Scholar 

  • Lüttge U, Popp M, Medina E, Cram WJ, Díaz M, Griffiths H, Lee HSJ, Schäfer C, Smith JAC, Stimmel KH (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. V. The Baris maritima- Sesuvium portulacastrum vegetation unit. New Phytol 111:283–291

    Article  Google Scholar 

  • Mateucci S (1987) The vegetation of Falcón State, Venezuela. Vegetatio 70:67–91

    Google Scholar 

  • Medina E, de Bifano T, Delgado M (1976) Diferenciación fotosintética en plantas superiores. Interciencia 1:96–104

    CAS  Google Scholar 

  • Medina E, Cram WJ, Lee HSJ, Luttge U, Popp M, Smith JAC, Diaz M (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. I. Site description and plant communities. New Phytol 111:233–243

    Article  Google Scholar 

  • Medina E, Francisco AM, Wingfield R, Casañas OL (2008) Halofitismo en plantas de la costa Caribe de Venezuela: halófitas y halotolerantes. Acta Bot Venezuelica 31:49–80

    Google Scholar 

  • Moreno-Casasola P (1988) Patterns of plant species distribution on coastal dunes along the Gulf of Mexico. J Biogeogr 15:787–806

    Article  Google Scholar 

  • Naidoo G, Naidoo Y (1998) Salt tolerance in Sporobolus virginicus: the importance of ion relations and salt secretion. Flora 193:337–344

    Google Scholar 

  • Nassar JM, Velásquez G, Romero-Briceño JC, Medina E (2013) Las cactáceas como elementos de caracterización de ambientes áridos y semiáridos en Venezuela. In: Medina E, Huber O, Nassar JM, Navarro P (eds) Recorriendo el paisaje vegetal de Venezuela. Ediciones IVIC/Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, pp 97–123

    Google Scholar 

  • Rieger W (1976) Vegetationskundliche Untersuchungen auf der Guajira-Halbinsel (Nord-Ost Kolumbien). Giessener Geographische Schriften. Heft 40. Geographisches Institut, Justus-Liebig Universität Giessen

    Google Scholar 

  • Sage RF, Sage TL, Pearcy RW, Borsch T (2007) The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. Am J Bot 94:1992–2003

    Article  PubMed  Google Scholar 

  • Sanz V, Riveros M, Gutiérrez M, Moncada R (2011) Vegetación y uso de la tierra en el estado Nueva Esparta, Venezuela: un análisis desde la ecología del paisaje. Interciencia 36:881–887

    Google Scholar 

  • Smith JAC, Popp M, Lüttge U, Cram WJ, Diaz M, Griffiths H, Lee HSJ, Medina E, Schäfer C, Stimmel KH, Thonke B (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela VI. Water relations and gas exchange of mangroves. New Phytol 111:293–307

    Article  Google Scholar 

  • St. Omer L, Barclay G (2002) Threatened halophytic communities on sandy coast of three Caribbean islands. Ann Bot Fenn 39:301–308

    Google Scholar 

  • Stevens PF (2006) Angiosperm phylogeny website. Version 7, May 2006. http://www.mobot.org/MOBOT/research/APweb/

  • Stoffers AL (1993) Dry coastal ecosystems of the West Indies. In: van der Maarel E (ed) Ecosystems of the World, 2B: Dry coastal ecosystems of Africa, America, Asia and Oceania. Elsevier Science Publishers/B.V., Amsterdam

    Google Scholar 

  • Tamayo F (1941) Exploraciones botánicas en la Península de Paraguaná, Estado Falcón. Bol Soc Venez Cienc Nat 47:1–78

    Google Scholar 

  • Véliz J (2012) Flora vascular terrestre de la Dependencia Federal Isla La Tortuga, Venezuela. Trabajo de Ascenso/Departamento de Biología, Universidad de Oriente, Cumaná

    Google Scholar 

  • Walter H (1973) Die Vegetation der Erde. Bd. II. 3.a Edición. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Walter H, Medina E (1971) Caracterización climática de Venezuela sobre la base de climadiagramas de estaciones particulares. Bol Soc Venez Cienc Nat 29:211–240

    Google Scholar 

  • Wiebe HH, Walter H (1972) Mineral ion composition of halophytic species from northern Utah. Am Midland Nat J 87:241–245

    Article  CAS  Google Scholar 

  • Wilhelmy H (1954) Die klimageomorphologische und pflanzengeographische Entwicklung des Trockengebietes am Nordrand Südamerikas seit dem Pleistozän. Die Erde 3/4:244–273

    Google Scholar 

Download references

Acknowledgements

To Mag. Grisel Velasquez of UniSIG at the Center of Ecology of the IVIC for producing the map of humidity provinces of northern Venezuela and Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Medina .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Plates I–IX

Caption (PDF 290377 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Medina, E. (2016). Physiological Ecology of Psammophytic and Halophytic Plant Species from Coastal Plains in Northern South America. In: Khan, M., Boër, B., Ȫzturk, M., Clüsener-Godt, M., Gul, B., Breckle, SW. (eds) Sabkha Ecosystems. Tasks for Vegetation Science, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-27093-7_3

Download citation

Publish with us

Policies and ethics