Skip to main content

Salt Contaminated Water Phytotreatment by Constructed Wetland

  • Chapter
  • First Online:
Sabkha Ecosystems

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 48))

Abstract

Soil and water salinization can be reclaimed using halophytes. Salt contaminated water are usually treated with membrane processes and thermal methods. However, constructed wetland an efficient and affordable technology has been proposed to remove salt from water using halophytes. Efficiency of constructed wetlands are reported in this paper. Studies generally observed salt absorption by plants and salt accumulation issues in soil. An analysis of the literature demonstrates that phytoextraction partially removes salt from salt contaminated water and must be coupled with other technologies for increased effectiveness. The use of brine volume reduction, to reduce the volume of contaminated water, used in conjunction with phytoextraction is proposed as an alternative. Brine volume reduction also provides the possibility of generating income by cash crop cultivation. Recommendations are proposed to improve the treatment of salt contaminated water. A constructed wetland with basins planted with incrementally higher salt tolerant species is presented. Its design is based on evapotranspiration modelling and species selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberta Environment (2008) Guideline for wetland establishment on reclaimed oil sands leases, 2nd edn. Prepared by Harris ML of Lorax Environmental for the Wetlands and Aquatics Subgroup of Reclamation Working Group of Cumulative Environmental Management Association, Fort McMurray

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration guidelines for computing crop water requirements. Irrigation and drainage paper 65. Rome, Italy

    Google Scholar 

  • Beebe DA, Castle JW, Molz FJ, Rodgers JH Jr (2014) Effects of evapotranspiration on treatment performance in constructed wetlands: experimental studies and modeling. Ecol Eng 71:394–400

    Article  Google Scholar 

  • Benes SE, Adhikari DD, Grattan SR, Snyder RL (2012) Evapotranspiration potential of forages irrigated with saline-sodic drainage water. Agric Water Manag 105:1–7

    Article  Google Scholar 

  • Białowiec A, Albuquerque A, Randerson PF (2014) The influence of evapotranspiration on vertical flow subsurface constructed wetland performance. Ecol Eng 67:89–94

    Article  Google Scholar 

  • Borin M, Milani M, Salvato M, Toscano A (2011) Evaluation of Phragmites australis (Cav.) Trin. evapotranspiration in Northern and Southern Italy. Ecol Eng 37:721–728

    Article  Google Scholar 

  • Brown JJ, Glenn EP, Fitzsimmons KM, Smith SE (1999) Halophytes for the treatment of saline aquaculture effluent. Aquaculture 175:255–268

    Article  CAS  Google Scholar 

  • Buhmann A, Papenbrock J (2013) Biofiltering of aquaculture effluents by halophytic plants: basic principles, current uses and future perspectives. Environ Exp Bot 92:122–133

    Article  Google Scholar 

  • Carter CT, Grieve CM, Poss JA (2005) Salinity effects on emergence, survival, and ion accumulation of Limonium perezii. J Plant Nutr 28:1243–1257

    Article  CAS  Google Scholar 

  • Chazarenc F, Naylor S, Comeau Y, Merlin G, Brisson J (2010) Modeling the effect of plants and peat on evapotranspiration in constructed wetlands. Int J Chem Eng 2010, Article ID 412734, 6 pages. doi:10.1155/2010/412734

    Google Scholar 

  • Díaz FJ, Benes SE, Grattan SR (2013) Field performance of halophytic species under irrigation with saline drainage water in the San Joaquin Valley of California. Agric Water Manag 118:59–69

    Article  Google Scholar 

  • Drexler JZ, Snyder RL, Spano D, Paw UKT (2004) A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrol Process 18:2071–2101

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Freedman A, Gross A, Shelef O, Rachmilevitch S, Arnon S (2014) Salt uptake and evapotranspiration under arid conditions in horizontal subsurface flow constructed wetland planted with halophytes. Ecol Eng 70:282–286

    Article  Google Scholar 

  • Gallagher JL (1985) Halophytic crops for cultivation at seawater salinity. Plant and Soil 89(1–3):323–336

    Google Scholar 

  • Glenn EP, McKeon C, Gerhart V, Nagler PL, Jordan F, Artiola J (2009) Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city. Landsc Urban Plan 89:57–64

    Article  Google Scholar 

  • Grattan SR, Benes SE, Peters DW, Diaz F (2008) Feasibility of irrigating pickleweed with hyper-saline drainage water. J Environ Qual 37:149–156

    Article  Google Scholar 

  • Grattan SR, Grieve CM, Poss JA, Robinson PH, Suarez DL, Benes SE (2004) Evaluation of salt-tolerant forages for sequential water reuse systems: III. Potential implications for ruminant mineral nutrition. Agric Water Manag 70(2):137–150

    Google Scholar 

  • Grieve CM (2011) Review. Israel J Plant Sci 59:187–196

    Article  Google Scholar 

  • Jordan FL, Yoklic M, Morino K, Brown P, Seaman R, Glenn EP (2009) Consumptive water use and stomatal conductance of Atriplex lentiformis irrigated with industrial brine in a desert irrigation district. Agr Forest Meteorol 149:899–912

    Article  Google Scholar 

  • Kadlec RH, Wallace SD (2009) Treatment wetlands. Taylor and Francis group, Boca Raton

    Google Scholar 

  • Karagiannis IC, Soldatos PG (2008) Water desalination cost literature: review and assessment. Desalination 223:448–456

    Article  CAS  Google Scholar 

  • Kaushal SS (2009) Chloride. In: Gene EL (ed) Encyclopedia of inland waters. Academic, Oxford, pp 23–29

    Chapter  Google Scholar 

  • Khan MA, Böer B, Öztürk MA, Al Abd al-Salam TIZ, Clüsener-Godt M, Gul B (2014) Sabkha ecosystems. Springer, Netherlands

    Google Scholar 

  • Landmeyer JE (2012) Introduction to phytoremediation of contaminated groundwater historical foundation, hydrologic control, and contaminant remediation. Springer, Dordrecht

    Book  Google Scholar 

  • Langergraber G (2005) The role of plant uptake on the removal of organic matter and nutrients in subsurface flow constructed wetlands: a simulation study. Water Sci Technol 51:213

    CAS  PubMed  Google Scholar 

  • Lymbery AJ, Doupe RG, Bennett T, Starcevich MR (2006) Efficacy of a subsurface-flow wetland using the estuarine sedge Juncus kraussii to treat effluent from inland saline aquaculture. Aquac Eng 34:1–7

    Article  Google Scholar 

  • Lymbery AJ, Kay GD, Doupé RG, Partridge GJ, Norman HC (2013) The potential of a salt-tolerant plant (Distichlis spicata cv. NyPa Forage) to treat effluent from inland saline aquaculture and provide livestock feed on salt-affected farmland. Sci Total Environ 445–446:192–201

    Article  PubMed  Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes—an emerging trend in phytoremediation. Int J Phytoremediation 13:959–969

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon SC, Jørgensen SE (2008) Phytoremediation. In: Sven Erik J, Brian F (eds) Encyclopedia of ecology. Academic, Oxford, pp 2751–2766

    Chapter  Google Scholar 

  • Mirck J, Volk TA (2012) Mass balances and allocation of salt ions from Solvay storm water for shrub willow (Salix spp.). Biomass Bioenergy 39:427–438

    Article  CAS  Google Scholar 

  • Mohamed YA, Bastiaanssen WGM, Savenije HHG, Van den Hurk BJJM, Finlayson CM (2012) Wetland versus open water evaporation: an analysis and literature review. Phys Chem Earth 47–48:114–121

    Article  Google Scholar 

  • Morteau B (2014) Développement d’un système de traitement des eaux de ruissellement routier par marais épurateur adapté et lit filtrant réactif. Thèse (Ph.D.), Université Laval

    Google Scholar 

  • Morteau B, Triffault-Bouchet G, Galvez R, Martel L, Leroueil S (2009) Treatment of salted road runoffs using Typha latifolia, Spergularia canadensis, and Atriplex patula: a comparison of their salt removal potential. J ASTM Int 6:218–225

    Article  Google Scholar 

  • Morteau B, Triffault-Bouchet G, Galvez R, Martel L (2014) Nutrient and removal kinetics impacts on salt phytoremediation by Atriplex patula and Typha angustifolia. J Environ Eng 0(0):04014059

    Google Scholar 

  • O’Leary J, Glenn E, Watson M (1985) Agricultural production of halophytes irrigated with seawater. Plant and Soil 89:311–321

    Article  Google Scholar 

  • Padmavathiamma PK, Ahmed M, Rahman HA (2014) Phytoremediation – a sustainable approach for contaminant remediation in arid and semi-arid regions – a review. Emirates J Food Agric 26:757–772

    Article  Google Scholar 

  • Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S (2014) Halophyte agriculture: success stories. Environ Exp Bot 107:71–83

    Article  Google Scholar 

  • Papaevangelou VA, Gikas GD, Tsihrintzis VA (2012) Evaluation of evapotranspiration in small on-site HSF constructed wetlands. J Environ Sci Health A 47:766–785

    Article  CAS  Google Scholar 

  • Redondo-Gómez S, Wharmby C, Castillo JM, Mateos-Naranjo E, Luque CJ, De Cires A, Luque T, Davy AJ, Enrique Figueroa M (2006) Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiol Plant 128:116–124

    Article  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Davy AJ, Fernández-Muñoz F, Castellanos EM, Luque T, Figueroa ME (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100:555–563

    Article  PubMed  PubMed Central  Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel J-L, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils, vol 68. NATO science series: IV: earth and environmental sciences. Springer, Netherlands, pp 25–52. doi:10.1007/1-4020-4688-x_2

  • Rozema ER (2014) Can plants be used to remove Na+ and Cl from nutrient solution in greenhouse production? The University of Guelph, Guelp

    Google Scholar 

  • Rozema J, Schat H (2013) Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ Exp Bot 92:83–95

    Article  CAS  Google Scholar 

  • Rozema ER, Gordon RJ, Zheng YB (2014) Plant species for the removal of Na+ and Cl from greenhouse nutrient solution. Hortscience 49:1071–1075

    CAS  Google Scholar 

  • San Joaquin Valley Drainage Program (ed) (1990) A management plan for agricultural subsurface drainage and related problems on the Westside San Joaquin Valley. U.-S. Department of the Interior and California Resources Agency, Sacramento

    Google Scholar 

  • Schoups G, Hopmans JW, Young CA, Vrugt JA, Wallender WW, Tanji KK, Panday S (2005) Sustainability of irrigated agriculture in the San Joaquin Valley, California. Proc Natl Acad Sci 102:15352–15356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala S, Mackay A (2011) Ion transport in halophytes. In: Ismail T (ed) Advances in botanical research, vol 57. Academic, London/New York, pp 151–199

    Google Scholar 

  • Shelef O, Gross A, Rachmilevitch S (2012) The use of Bassia indica for salt phytoremediation in constructed wetlands. Water Res 46:3967–3976

    Article  CAS  PubMed  Google Scholar 

  • Sindilariu PD, Schulz C, Reiter R (2007) Treatment of flow-through trout aquaculture effluents in a constructed wetland. Aquaculture 270:92–104

    Article  CAS  Google Scholar 

  • Skaggs TH, Suarez DL, Corwin DL (2014) Global sensitivity analysis for UNSATCHEM simulations of crop production with degraded waters. Gsvadzone:13. doi:10.2136/vzj2013.09.0171

    Google Scholar 

  • Sutherland G, Chasmer LE, Petrone RM, Kljun N, Devito KJ (2014) Evaluating the use of spatially varying versus bulk average 3D vegetation structural inputs to modelled evapotranspiration within heterogeneous land cover types. Ecohydrology 7:1545–1559

    Article  Google Scholar 

  • Suyama H, Benes SE, Robinson PH, Getachew G, Grattan SR, Grieve CM (2007) Biomass yield and nutritional quality of forage species under long-term irrigation with saline-sodic drainage water: field evaluation. Anim Feed Sci Technol 135:329–345

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Touchette BW, Smith GA, Rhodes KL, Poole M (2009) Tolerance and avoidance: two contrasting physiological responses to salt stress in mature marsh halophytes Juncus roemerianus Scheele and Spartina alterniflora Loisel. J Exp Mar Biol Ecol 380:106–112

    Article  CAS  Google Scholar 

  • Trites M, Bayley SE (2009) Vegetation communities in continental boreal wetlands along a salinity gradient: implications for oil sands mining reclamation. Aquat Bot 91:27–39

    Article  Google Scholar 

  • Ungar IA (1991) Ecophysiology of vascular halophytes. CRC Press, Boca Raton

    Google Scholar 

  • Vengosh A (2007) Salinization and saline environments. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry. Pergamon, Oxford, pp 1–35

    Google Scholar 

  • Ventura Y, Sagi M (2013) Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environ Exp Bot 92:144–153

    Article  Google Scholar 

  • Vico G, Revelli R, Porporato A (2014) Ecohydrology of street trees: design and irrigation requirements for sustainable water use. Ecohydrology 7:508–523

    Article  Google Scholar 

  • Vymazal J (2011) Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674:133–156

    Article  CAS  Google Scholar 

  • Webb JM, Quintã R, Papadimitriou S, Norman L, Rigby M, Thomas DN, Le Vay L (2012) Halophyte filter beds for treatment of saline wastewater from aquaculture. Water Res 46:5102–5114

    Article  CAS  PubMed  Google Scholar 

  • Zalesny JA, Zalesny RS Jr, Wiese AH, Sexton B, Hall RB (2008) Sodium and chloride accumulation in leaf, woody, and root tissue of Populus after irrigation with landfill leachate. Environ Pollut 155:72–80

    Article  CAS  PubMed  Google Scholar 

  • Zhang FL, Zhang Y, Zhang J, Xu KD, Liu K, Wang Y, Lu YJ, Xiang J, Zhang L, Shi XY, Wang H (2014) First report of powdery mildew caused by Blumeria graminis on Festuca arundinacea in China. Plant Dis 98(11):1585–1585

    Google Scholar 

  • Zhao KF, Fan H, Song J, Sun MX, Wang BZ, Zhang SQ, Ungar IA (2005) Two Na+ and Cl− hyperaccumulators of the Chenopodiaceae. J Integr Plant Biol 47(3):311–318

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Morteau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morteau, B. (2016). Salt Contaminated Water Phytotreatment by Constructed Wetland. In: Khan, M., Boër, B., Ȫzturk, M., Clüsener-Godt, M., Gul, B., Breckle, SW. (eds) Sabkha Ecosystems. Tasks for Vegetation Science, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-27093-7_14

Download citation

Publish with us

Policies and ethics