Skip to main content

Technological Advances in Studying Gene Pool Diversity and Its Exploitation

  • Chapter
  • First Online:
Molecular Breeding for Sustainable Crop Improvement

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 11))

  • 1613 Accesses

Abstract

Molecular biology-based plant breeding methodology has contributed significantly to crop improvement by creation of new improved varieties with superior genotypes. The advancements in genomic sciences led to the development of several new faster methods that have improved our understanding and accessibility of available gene pools, thus providing an efficient source of information. These developments have enabled researchers to develop richer gene pools that would be capable of meeting the challenges of increasing agriculture demands over the globe. Informative descriptions of gene pools may become available as the genomes are being sequenced, functionally characterized, and made available at the public domain. Modern technologies for large-scale marker surveys are capable of exploring various dimensions of gene pools and provide the raw information for understanding the extent of genetic variation in gene pools and its exploitation for crop improvement. High-throughput marker development methods provide several advantages as sufficient databases can be generated for various crop genomes assisting in the assessment of crop diversity which can be an efficient source of information for developing breeding schemes for crop improvement programmes in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27(4):617–631

    Article  CAS  PubMed  Google Scholar 

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G et al (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113(8):1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Alsop BP, Farre A, Wenzl P, Wang JM, Zhou MX, Romagosa I, Kilian A, Steffenson BJ (2011) Development of wild barley-derived DArT markers and their integration into a barley consensus map. Mol Breed 27(1):77–92

    Article  Google Scholar 

  • Alwala S, Suman A, Arro JE, Veremis JC, Kimbeng CA (2006) Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci 46(1):448–455

    Article  CAS  Google Scholar 

  • Banks TW, Jordan MC, Somers DJ (2009) Single-feature polymorphism mapping in bread wheat. The Plant Genome 2(2):167–178

    Article  CAS  Google Scholar 

  • Bao J, Lee S, Chen C, Zhang X, Zhang Y, Liu S, Clark T et al (2005) Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol 138(3):1216–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell PA, Chaturvedi S, Gelfand CA, Huang CY, Kochersperger M, Kopla R, Modica F et al (2002) SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques 32:70–72

    Google Scholar 

  • Belo A, Beatty MK, Hondred D, Fengler KA, Li B, Rafalski A (2010) Allelic genome structural variations in maize detected by array comparative genome hybridization. Theor Appl Genet 120(2):355–367

    Article  CAS  PubMed  Google Scholar 

  • Bennett ST, Barnes C, Cox A, Davies L, Brown C (2005) Toward the $1000 human genome, pp 373–382

    Google Scholar 

  • Berkman PJ, Lai K, Lorenc MT, Edwards D (2012) Next-generation sequencing applications for wheat crop improvement. Am J Bot 99(2):365–371

    Article  CAS  PubMed  Google Scholar 

  • Bernardo AN, Bradbury PJ, Ma H, Hu S, Bowden RL, Buckler ES, Bai G (2009) Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays. BMC Genom 10(1):251

    Article  CAS  Google Scholar 

  • Borevitz JO, Liang D, Plouffe D, Chang HS, Zhu T, Weigel D, Berry CC, Winzeler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borevitz JO, Hazen SP, Michael TP, Morris GP, Baxter IR, Hu TT, Chen H et al (2007) Genome-wide patterns of single-feature polymorphism in Arabidopsis thaliana. PNAS 104(29):12057–12062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinez B, Blair MW, Kilian A, Carbonell SAM, Chiorato F, Rubiano LB (2012) A whole genome DArT assay to assess germplasm collection diversity in common beans. Mol Breed 30(1):181–193

    Article  CAS  Google Scholar 

  • Chu CG, Xu SS, Friesen TL, Faris JD (2008) Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed 22(2):251–266

    Article  CAS  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP et al (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177(3):1889–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Bhat PR, Sudhakar C, Ehlers JD, Wanamaker S, Roberts PA, Cui X, Close TJ (2008) Detection and validation of single feature polymorphisms in cowpea (Vigna unguiculata L. Walp) using a soybean genome array. BMC Genom 9(1):107

    Article  CAS  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12(7):499–510

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Vincent K, Sharp P (2009) Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor®. BMC Plant Biol 9(1):143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edenberg HJ, Liu Y (2009) Laboratory methods for high-throughput genotyping. Cold Spring Harb Protoc 2009(11):pdb-top62

    Article  PubMed  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138

    Article  CAS  PubMed  Google Scholar 

  • Ekman DR, Lorenz WW, Przybyla AE, Wolfe NL, Dean JFD (2003) SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol 133(3):1397–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis TP, Humphrey KE, Smith MJ, Cotton RGH (1998) Chemical cleavage of mismatch: a new look at an established method. Hum Mutat 11:345–353

    Article  CAS  PubMed  Google Scholar 

  • Etter PD, Bassham S, Hohenlohe PA, Johnson EA, Cresko WA (2011) SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Molecular methods for evolutionary genetics. Humana Press, New York, pp 157–178

    Google Scholar 

  • Fakhrai-Rad H, Zheng J, Willis TD, Wong K, Suyenaga K, Moorhead M, Eberle J, Thorstenson YR (2004) SNP discovery in pooled samples with mismatch repair detection. Genome Res 14:1404–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M et al (2003) Highly parallel SNP genotyping. Cold Spring Harbor symposia on quantitative biology, vol 68. Cold Spring Harbor Laboratory Press, New York, pp 69–78

    Google Scholar 

  • Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Garcia EW, Lebruska LL, Laurent M, Shen R, Barker D (2006) [3] Illumina universal bead arrays. Methods Enzymol 410:57–73

    Article  CAS  PubMed  Google Scholar 

  • Flavell AJ, Bolshakov VN, Booth A, Jing R, Russell J, Ellis THN, Isaac P (2003) A microarray-based high throughput molecular marker genotyping method: the tagged microarray marker (TAM) approach. Nucleic Acids Res 31(19):115

    Article  CAS  Google Scholar 

  • Fregene M, Matsumura H, Akano A, Dixon A, Terauchi R (2004) Serial analysis of gene expression (SAGE) of host–plant resistance to the cassava mosaic disease (CMD). Plant Mol Biol 56(4):563–571

    Article  CAS  PubMed  Google Scholar 

  • Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13(2):167–173

    Article  CAS  PubMed  Google Scholar 

  • Goldrick MM (2001) RNase cleavage-based methods for mutation/SNP detection, past and present. Hum Mutat 18:190–204

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Zhang F, Lupski JR (2008) Mechanisms for human genomic rearrangements. Pathogenetics 1(1):4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37(5):549–554

    Article  CAS  PubMed  Google Scholar 

  • Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT (2003) Amplicon melting analysis with labelled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clin Chem 49:396–406

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms (SNPs): a new paradigm in molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80(4):524–535

    CAS  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156(1–2):1–13

    Article  Google Scholar 

  • Hamblin MT, Buckler ES, Jannink JL (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27(3):98–106

    Article  CAS  PubMed  Google Scholar 

  • Hardenbol P, Yu F, Belmont J, MacKenzie J, Bruckner C, Brundage T, Boudreau A et al (2005) Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res 15(2):269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes P, Szucs P (2006) Disequilibrium and association in barley: thinking outside the glass. Proc Natl Acad Sci 103(49):18385–18386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115(3):383–391

    Article  CAS  PubMed  Google Scholar 

  • Hofinger BJ, Hai-Chun J, Hammond-Kosack KE, Kanyuka K (2009) High-resolution melting analysis of cDNA-derived PCR amplicons for rapid and cost-effective identification of novel alleles in barley. Theor Appl Genet 119(5):851–865

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. PMB Reporter 21(3):289–294

    CAS  Google Scholar 

  • Hu J, Ochoa OE, Truco MJ, Vick BA (2005) Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica 144(3):225–235

    Article  CAS  Google Scholar 

  • Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA et al (2000) Functional discovery via a compendium of expression profiles. Cell 102(1):109–126

    Article  CAS  PubMed  Google Scholar 

  • Hyten DL, Song Q, Choi IY, Yoon MS, Specht JE, Matukumalli LK, Nelson RL, Shoemaker RC, Young ND, Cregan PB (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116(7):945–952

    Article  CAS  PubMed  Google Scholar 

  • Hyten DL, Song Q, Fickus EW, Quigley CV, Lim JS, Choi IY, Hwang EY, Pastor-Corrales M, Cregan PB (2010) High-throughput SNP discovery and assay development in common bean. BMC Genom 11(1):475

    Article  CAS  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29(4):25

    Article  Google Scholar 

  • Jeong HJ, Jo YD, Soung-Woo P, Byoung-Cheorl K (2010) Identification of capsicum species using SNP markers based on high resolution melting analysis. Genome 53(12):1029–1040

    Article  CAS  PubMed  Google Scholar 

  • Jing R, Bolshakov V, Flavell AJ (2007) The tagged microarray marker (TAM) method for high-throughput detection of single nucleotide and indel polymorphisms. Nat Protoc 2(1):168–177

    Article  CAS  PubMed  Google Scholar 

  • Jordan DR, Mace ES, Henzell RG, Klein PE, Klein RR (2010) Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 120(7):1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Misra A (2007) SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Bhat PR, Cui X, Walia H, Xu J, Wanamaker S, Ismail AM, Wilson C, Close TJ (2009) Detection and validation of single feature polymorphisms using RNA expression data from a rice genome array. BMC Plant Biol 9(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  • King J, Thomas A, James C, King I, Armstead I (2013) A DArT marker genetic map of perennial ryegrass (Lolium perenne L.) integrated with detailed comparative mapping information; comparison with existing DArT marker genetic maps of Lolium perenne, L. multiflorum and Festuca pratensis. BMC Genom 14(1):437

    Article  CAS  Google Scholar 

  • Koebner R, Summers RW (2003) 21st century wheat breeding: plot selection or plate detection? Trends Biotechnol 21(2):59–63

    Article  CAS  PubMed  Google Scholar 

  • Kokoris M, Dix K, Moynihan K, Mathis J, Erwin B, Grass P, Hines B, Duesterhoeft A (2000) High-throughput SNP genotyping with the Masscode system. Mol Diagn 5(4):329–340

    Article  CAS  PubMed  Google Scholar 

  • Kris RM, Felder S, Deyholos M, Lambert GM, Hinton J, Botros I, Martel R, Seligmann B, Galbraith DW (2007) High-throughput, high-sensitivity analysis of gene expression in Arabidopsis. Plant Physiol 144(3):1256–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuklin A, Munson K, Gjerde D, Haefele R, Taylor P (1997) Detection of single-nucleotide polymorphisms with the WAVEâ„¢ DNA fragment analysis system. Genet Test 1(3):201–206

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Qiu J, Joshi T, Valliyodan B, Xu D, Nguyen HT (2007) Single feature polymorphism discovery in rice. PLoS ONE 2(3):284

    Article  CAS  Google Scholar 

  • Kwok PY (2001) Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet 2:235–258

    Article  CAS  PubMed  Google Scholar 

  • Kwok PY, Chen X (2003) Detection of single nucleotide polymorphisms. Curr Issues Mol Biol 5:43–60

    CAS  PubMed  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42(12):1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Lee M (1998) Genome projects and gene pools: new germplasm for plant breeding? Proc Natl Acad Sci 95(5):2001–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmensiek A, Sutherland MW, McNamara RB (2008) The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theor Appl Genet 117(5):721–728

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang X, Dong R, Yang Y, Zhou J, Yu C, Cheng Y, Yan C, Chen J (2011) Evaluation of high-resolution melting for gene mapping in rice. Plant Mol Biol Reporter 29(4):979–985

    Article  CAS  Google Scholar 

  • Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111(4):782–794

    Article  CAS  PubMed  Google Scholar 

  • Luca F, Hudson RR, Witonsky DB, Rienzo AD (2011) A reduced representation approach to population genetic analyses and applications to human evolution. Genome Res 21(7):1087–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4(12):981–994

    Article  CAS  PubMed  Google Scholar 

  • Lyamichev V, Neri B (2003) Invader assay for SNP genotyping. Single nucleotide polymorphisms. Springer, New York, pp 229–240

    Google Scholar 

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genom 9(1):26

    Article  CAS  Google Scholar 

  • Mace ES, Jean-Francois Rami, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of Sorghum that integrates multiple component maps and high-throughput diversity array technology (DArT) markers. BMC Plant Biol 9(1):13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martel RR, Botros IW, Rounseville MP, Hinton JP, Staples RR, Morales DA, Farmer JB, Seligmann BE (2002) Multiplexed screening assay for mRNA combining nuclease protection with luminescent array detection. Assay Drug Dev Technol 1(1):61–71

    Article  CAS  PubMed  Google Scholar 

  • Matsumura H, Nirasawa S, Terauchi R (1999) Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J 20(6):719–726

    Article  CAS  PubMed  Google Scholar 

  • Matukumalli LK, Grefenstette JJ, Hyten DL, Choi IY, Cregan PB, Van Tassell CP (2006) SNP-PHAGE-high throughput SNP discovery pipeline. BMC Bioinf 7:468

    Article  CAS  Google Scholar 

  • McHale LK, Haun WJ, Xu WW, Bhaskar PB, Anderson JE, Hyten DL, Gerhardt DJ, Jeddeloh JA, Stupar JM (2012) Structural variants in the soybean genome localize to clusters of biotic stress-response genes. Plant Physiol 159(4):1295–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meirmans PG, Lamothe M, Perinet P, Isabel N (2007) Species-specific single nucleotide polymorphism markers for detecting hybridization and introgression in poplar (This article is one of a selection of papers published in the special issue on Poplar Research in Canada). Botany 85(11):1082–1091

    Google Scholar 

  • Miklas PN, Hu J, Grunwald NJ, Larsen KM (2006) Potential application of TRAP (targeted region amplified polymorphism) markers for mapping and tagging disease resistance traits in common bean. Crop Sci 46(2):910–916

    Article  CAS  Google Scholar 

  • Miller TP, Gu Z, Li Q, Hillier L, Kwok PY (1998) Overlapping genomic sequences: a treasure trove of single-nucleotide polymorphisms. Genome Res 8(7):748–754

    Google Scholar 

  • Minoche AE, Dohm JC, Himmelbauer H (2011) Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol 12(11):112

    Article  CAS  Google Scholar 

  • Moy P, Qutob D, Chapman BP, Atkinson I, Gijzen M (2004) Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Mol Plant Microbe Interact 17(10):1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Muleo R, Colao MC, Miano D, Cirilli M, Intrieri MC, Baldoni L, Rugini E (2009) Mutation scanning and genotyping by high-resolution DNA melting analysis in olive germplasm. Genome 52(3):252–260

    Article  CAS  PubMed  Google Scholar 

  • Oleykowski CA, Mullins SRB, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivier M (2005) The Invader® assay for SNP genotyping. Mutat Res Fundam Mol Mech Mutagen 573(1):103–110

    Article  CAS  Google Scholar 

  • Olivier M, Chuang LM, Chang MS, Chen YT, Pei D, Ranade K, Witte A et al (2002) High-throughput genotyping of single nucleotide polymorphisms using new biplex invader technology. Nucleic Acids Res 30(12):53

    Article  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orsini L, Pajunen M, Hanski I, Savilahti H (2007) SNP discovery by mismatch-targeting of Mu transposition. Nucleic Acids Res 35:44

    Article  CAS  Google Scholar 

  • Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52(4):413–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petroli CD, Carolina PS, Carling J, Dorothy AS, Vaillancourt RE, Myburg AA, da Silva Jr OB, Pappas GJ Jr, Kilian A, Grattapaglia D (2012) Genomic characterization of DArT markers based on high-density linkage analysis and physical mapping to the Eucalyptus genome. PLoS ONE 7(9):44684

    Article  CAS  Google Scholar 

  • Poland JA, Trevor WR (2012) Genotyping-by-sequencing for plant breeding and genetics. The Plant Genome 5(3):92–102

    Article  CAS  Google Scholar 

  • Poroyko V, Hejlek LG, Spollen WG, Springer GK, Nguyen HT, Sharp RE, Bohnert HJ (2005) The maize root transcriptome by serial analysis of gene expression. Plant Physiol 138(3):1700–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16,000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53(1):90–101

    Article  CAS  PubMed  Google Scholar 

  • Pourmand N, Elahi E, Davis RW, Ronaghi M (2002) Multiplex pyrosequencing. Nucleic Acids Res 30(7):31

    Article  Google Scholar 

  • Przyborowski JA, Sulima P, Kuszewska A, ZaÅ‚uski D, Kilian A (2013) Phylogenetic relationships between four Salix L. species based on DArT markers. Int J Mol Sci 14(12):24113–24125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler et al (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richmond GS, Khine H, Zhou TT, Ryan DE, Brand T, McBride MT, Killeen K (2011) MassCode liquid arrays as a tool for multiplexed high-throughput genetic profiling. PLoS ONE 6(4):18967

    Article  CAS  Google Scholar 

  • Roberts RA, Sabalos CM, LeBlanc ML, Martel RR, Frutiger YM, Unger JM, Botros IW et al (2007) Quantitative nuclease protection assay in paraffin-embedded tissue replicates prognostic microarray gene expression in diffuse large-B-cell lymphoma. Lab Invest 87(10):979–997

    Article  CAS  PubMed  Google Scholar 

  • Robinson SJ, Parkin IAP (2008) Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature. BMC Genom 9(1):434

    Article  CAS  Google Scholar 

  • Ronaghi M (2003) Pyrosequencing for SNP genotyping. Methods in molecular biologyâ„¢, vol 212. Springer, New York, pp 189–195

    Google Scholar 

  • Rostoks N, Borevitz JO, Hedley PE, Russell J, Mudie S, Morris J, Cardle L, Marshall DF, Waugh R (2005) Single-feature polymorphism discovery in the barley transcriptome. Genome Biol 6(6):R54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT et al (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci 103(49):18656–18661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356):348–352

    Article  CAS  PubMed  Google Scholar 

  • Rowe HC, Renaut S, Guggisberg A (2011) RAD in the realm of next-generation sequencing technologies. Mol Ecol 20(17):3499–3502

    CAS  PubMed  Google Scholar 

  • Royo JL, Galan JJ (2009) Pyrosequencing for SNP genotyping. Single nucleotide polymorphisms. Humana Press, New York, pp 123–133

    Chapter  Google Scholar 

  • Salathia N, Lee HN, Sangster TA, Morneau K, Landry CR, Schellenberg K, Behere AS, Gunderson KL, Cavalieri D, Jander G, Queitsch C (2007) Indel arrays: an affordable alternative for genotyping. Plant J 51:727–737

    Article  CAS  PubMed  Google Scholar 

  • Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49(5):545–555

    Article  CAS  PubMed  Google Scholar 

  • Shaikh TH, Gai X, Perin JC, Glessner JT, Xie H, Murphy K, O’Hara R et al (2009) High-resolution mapping and analysis of copy number variations in the human genome: a data resource for clinical and research applications. Genome Res 19(9):1682–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokurenko EV, Tchesnokova V, Yeung AT, Oleykowski CA, Trintchina E, Hughes KT, Rashid RA, Brint JM (2001) Detection of simple mutations and polymorphisms in large genomic regions. Nucleic Acids Res 29:e111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonah H, Bastien M, Iquira E, Tardivel A, Legare G et al (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8(1):54603

    Article  CAS  Google Scholar 

  • Spiegelman JI, Mindrinos MN, Oefner PJ (2000) High-accuracy DNA sequence variation screening by DHPLC. Biotechniques 29(5):1084–1093

    CAS  PubMed  Google Scholar 

  • Springer NM, Ying K, Fu Y, Ji T, Yeh Cheng-Ting J, Yi WuW et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5(11):1000734

    Article  CAS  Google Scholar 

  • Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the BeadArrayâ„¢ platform. Biotechnol J 2(1):41–49

    Article  CAS  PubMed  Google Scholar 

  • Steffenson BJ, Olivera P, Roy JK, Jin Y, Smith KP, Muehlbauer GJ (2007) A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Crop Pasture Sci 58(6):532–544

    Article  Google Scholar 

  • Suh Y, Vijg J (2005) SNP discovery in associating genetic variation with human disease phenotypes. Mutat Res 573:41–53

    Article  CAS  PubMed  Google Scholar 

  • Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, Springer NM (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20(12):1689–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syvanen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37:S5–S10

    Article  PubMed  CAS  Google Scholar 

  • Tabone T, Sallmann G, Webb E, Cotton RG (2006) Detection of 100 % of mutations in 124 individuals using a standard UV/Vis microplate reader: a novel concept for mutation scanning. Nucleic Acids Res 34:45

    Article  CAS  Google Scholar 

  • Tan S, Zhong Y, Hou H, Yang S, Tian D (2012) Variation of presence/absence genes among Arabidopsis populations. BMC Evol Biol 12(1):86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tassell CPV, Smith TPL, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard TS (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5:247–252

    Article  PubMed  CAS  Google Scholar 

  • Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotech 2:195–212

    Article  Google Scholar 

  • Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HW, Bjornstad A et al (2009) New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genom 10(1):39

    Article  CAS  Google Scholar 

  • Trendelenburg G, Prass K, Priller J, Kapinya K, Polley A, Muselmann C, Ruscher K, Kannbley U, Schmitt AO, Castell S, Wiegand F, Meisell A, Rosenthal A, Dirnagl U (2002) Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral ischemia. J of Neuroscience 22(14): 5879-5888

    Google Scholar 

  • Twyman RM (2004) SNP discovery and typing technologies for pharmacogenomics. Curr Top Med Chem 4:1423–1431

    Article  CAS  PubMed  Google Scholar 

  • Vega FM, Lazaruk KD, Rhodes MD, Wenz MH (2005) Assessment of two flexible and compatible SNP genotyping platforms: TaqMan® SNP genotyping assays and the SNPlexâ„¢ genotyping system. Mut Res Fundam Mol Mech Mutagen 573(1):111–135

    Article  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  CAS  PubMed  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. PNAS 101(26):9915–9920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P et al (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genom 7(1):206

    Article  CAS  Google Scholar 

  • West MAL, Leeuwen HV, Kozik A, Kliebenstein DJ, Doerge RW, Clair SDA, Michelmore RW (2006) High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Res 16(6):787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White J, Law JR, MacKay I, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116(3):439–453

    Article  CAS  PubMed  Google Scholar 

  • Wittwer CT, Reed GH, Gundry CN, Vandersteen JG et al (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860

    Article  CAS  PubMed  Google Scholar 

  • Wolford J, Blunt D, Ballecer C, Prochazka M (2000) High-throughput SNP detection by using DNA pooling and denaturing high performance liquid chromatography (DHPLC). Hum Genet 107(5):483–487

    Article  CAS  PubMed  Google Scholar 

  • Wu SB, Wirthensohn MG, Hunt P, Gibson JP, Sedgley M (2008) High resolution melting analysis of almond SNPs derived from ESTs. Theor Appl Genet 118(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Wu SB, Tavassolian I, Rabiei G, Hunt P, Wirthensohn M, Gibson JP, Ford CM, Sedgley M (2009) Mapping SNP-anchored genes using high-resolution melting analysis in almond. Mol Genet Genomics 282(3):273–281

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, McNally K, Li CY, Leung H, Zhu YY (2006) A high-throughput genomic tool: diversity array technology complementary for rice genotyping. J Integr Plant Biol 48(9):1069–1076

    Article  CAS  Google Scholar 

  • Yanagihara K, Mizuuchi K (2002) Mismatch-targeted transposition of Mu: a new strategy to map genetic polymorphism. Proc Natl Acad Sci USA 99:11317–11321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SY, Saxena RK, Kulwal PL, Ash GJ, Dubey A, Harper JD, Upadhyaya HD, Gothalwal R, Kilian A, Varshney RK (2011) The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers. J Genet 90(1):103–109

    Article  PubMed  Google Scholar 

  • Yu P, Wang C, Xu Q, Feng Y, Yuan X, Yu H, Wang Y, Tang S, Wei X (2011) Detection of copy number variations in rice using array-based comparative genomic hybridization. BMC genomics 12(10):372

    Google Scholar 

  • Zhang LM, Luo H, Liu ZQ, Zhao Y, Luo JC, Hao DY, Jing HC (2014) Genome-wide patterns of large-size presence/absence variants in sorghum. J Integr Plant Biol 56(1):24–37

    Article  CAS  PubMed  Google Scholar 

  • Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS, Liu TF et al (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12(11):R114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bali, S., Goel, S., Raina, S.N. (2016). Technological Advances in Studying Gene Pool Diversity and Its Exploitation. In: Rajpal, V., Rao, S., Raina, S. (eds) Molecular Breeding for Sustainable Crop Improvement. Sustainable Development and Biodiversity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-27090-6_7

Download citation

Publish with us

Policies and ethics