Advertisement

Status and Opportunities of Molecular Breeding Approaches for Genetic Improvement of Tea

  • Rahul Kumar
  • Kuldip
  • Paramvir Singh Ahuja
  • Ram Kumar Sharma
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 11)

Abstract

Tea is the most popular perennial plantation crop in the Southeast Asian countries because of its attractive aroma, taste, and health benefits. Tea plantations provides an important agro-based, eco-friendly employment generating and export oriented industries in all the tea-growing countries. However, the future of tea industry depends on the availability of high-yielding and high-quality tea clones with greater tolerance to pest, diseases, and environmental stresses. Genetic improvement of tea involves identification, characterization, evaluation, domestication, maintenance, and utilization of germplasm for the development of superior plant material. Conventional breeding program in tea is, however, limited by long gestation period, outbreeding nature, and self-incompatibility. This chapter summarizes the status of emerging molecular genomic information that can expedite the genetic improvement in tea and hence the productivity too. This will also provide a background for possibilities of modern tea breeding together with some current efforts for the development of sequence-based markers such as microsatellites, single-nucleotide polymorphisms (SNPs) and links genetic diversity of existing gene pools for the identification of diverse parental groups and efficient phenotyping to support operational breeding. Preliminary attempts on quantitative trait locus (QTL) mapping in tea were also reviewed, and prospectives are also provided on power of association genetics to dissect quantitative traits. Challenges and opportunities to integrate advancement and advent of next-generation sequencing (NGS) technologies to generate genome-wide makers and to integrate genomic information into directional selective breeding are also discussed.

Keywords

Camellia sinensis Genetic diversity Linkage mapping Molecular markers Simple sequence repeat 

Notes

Acknowledgment

We acknowledged funding from CSIR-PLOMICS and DBT Tea projects. The Director of CSIR-IHBT is acknowledged for providing necessary facilities. This is IHBT communication No. 3863.

References

  1. Alves A, Rosado C, Faria D, Guimarães L, Lau D, Brommonschenkel S, Grattapaglia D, Alfenas A (2012) Genetic mapping provides evidence for the role of additive and non-additive QTLs in the response of inter-specific hybrids of Eucalyptus to Puccinia psidii rust infection. Euphytica 183:27–38CrossRefGoogle Scholar
  2. Arcade A, Anselin F, Faivre Rampant P, Lesage MC, Paques LE, Prat D (2000) Application of AFLP, RAPD and ISSR markers to genetic mapping of European and Japanese larch. Theor Appl Genet 100:299–307CrossRefGoogle Scholar
  3. Ardiel GS, Grewal TS, Deberdt P, Rossnagel BG, Scoles GJ (2002) Inheritance of resistance to covered smut in barley and development of a tightly linked SCAR marker. Theor Appl Genet 104:457–464PubMedCrossRefGoogle Scholar
  4. Arulpragasam PV (1992) Disease contrl in Asia. In: Wilson KC, Cliffor MN (eds) Tea cultivation to consumption. Chapman and Hall, London, pp 353–374Google Scholar
  5. Ayliffe MA, Lawrence GJ, Ellis JG, Pryor AJ (1994) Heteroduplex molecules formed between allelic sequences cause nonparental RAPD bands. Nucleic Acids Res 22:1632–1636PubMedPubMedCentralCrossRefGoogle Scholar
  6. Banerjee B (1992) Botanical classification of tea. In: Wilson KC, Clifford MN (eds) Tea: cultivation to consumption. Chapman and Hall, London, pp 25–52CrossRefGoogle Scholar
  7. Barreneche T, Bodénès C, Lexer C, Trontin JF, Fluch S, Streiff R, Plomion C, Roussel G, Steinkellner H, Burg K, Favre JM, Glössl J, Kremer A (1998) A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme, and 5S rDNA markers. Theor Appl Genet 97:1090–1103CrossRefGoogle Scholar
  8. Barua UM, Chalmers KJ, Hackett CA, Thomas WTB, Powell W, Waugh R (1993) Identification of RAPD markers linked to Rhyncosporium secalis resistance locus in barley using isogenic lines and bulked segregant analysis. Heredity 71:177–184PubMedCrossRefGoogle Scholar
  9. Basu B (2002–2003) Drink tea and keep healthy. Int J Tea Sci 2(3):5–7Google Scholar
  10. Bezbaruah HP (1968) Genetic improvement of tea in Northeast India. Its problems as well as possibilities. Indian J Genet 28:126–134Google Scholar
  11. Bezbaruah HP (1971) Cytological investigation in the family Theaceae-I: chromosome numbers in some Camellia species and allied genera. Caryologia 24:421–426CrossRefGoogle Scholar
  12. Bhardwaj P, Kumar R, Sharma H, Ahuja PS, Sharma RK (2013) Development and utilization of genomic and genic microsatellite markers in Assam tea (Camellia assamica spp. assamica) and related Camellia species. Plant Breed 132:748–763CrossRefGoogle Scholar
  13. Bhardwaj P, Sharma RK, Kumar R, Sharma H, Tewari R, Ahuja PS (2014) SSR marker based DNA fingerprinting and diversity assessment in superior tea germplasmGoogle Scholar
  14. Bradshaw HD Jr (1998) Case history in genetics of long-lived plants. Molecular approaches to domestication of a fast-growing forest tree. Populus. In: Paterson AH (ed) Molecular dissection of complex. CRC Press, New York, pp 219–228Google Scholar
  15. Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theor Appl Genet 97:816–827CrossRefGoogle Scholar
  16. Brondani RPV, Brondani C, Grattapaglia D (2002) Towards a genuswide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers. Mol Genet Genomics 267:338–347PubMedCrossRefGoogle Scholar
  17. Brondani RPV, Williams ER, Brondani C, Grattapaglia D (2006) A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol 6:20PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bundock PC, Potts BM, Vaillancourt RE (2008) Detection and stability of quantitative trait loci (QTL) in Eucalyptus globulus. Tree Genet Genomes 4:85–95CrossRefGoogle Scholar
  19. Carlson JE, Tulsieram LK, Glaubitz JC, Luk VWK, Kauffeld C, Rutledge R (1991) Segregation of random amplified DNA markers in F1 progeny of conifers. Theor Appl Genet 83:194–200PubMedCrossRefGoogle Scholar
  20. Cervera MT, Stormel V, Ivens B, Gusmão J, Liu BH, Hostyn V, Van Slyckenc J, Van Montagu M, Boerjan W (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787–809PubMedPubMedCentralGoogle Scholar
  21. Chagne D, Lalanne C, Madur D, Kumar S, Frigerio J-M, Krier C, Decroocq S, Savoure Al, Bou-Dagher-Karrat M, Bertocchi E, Brach J, Plomion C (2002) A high density linkage map for maritime pine based on AFLPs. Ann For Sci 59:627–636CrossRefGoogle Scholar
  22. Chalmers KJ, Waugh R, Sprent JI, Powell W (1992) Detection of genetic variation between and within populations of Gliricidia sepium and G. maculata using RAPD markers. Heredity 69:465–472PubMedCrossRefGoogle Scholar
  23. Chang HT (1981) Taxonomy of the genus Camellia. Acta Sci Nat Univ Sunyatseni Monogr Ser 1:1–180Google Scholar
  24. Chang HT (1998) Flora of Reipublicae Popularis Sinicae, Delectis Florae Republicae Popularis Sinicae, Agendae Academiae Sinicae Edita. Tomus 49:101–113Google Scholar
  25. Chang HT, Bartholomew B (1984) Camellias. Timber Press, PortlandGoogle Scholar
  26. Chen L, Yu FL, Yao MZ, Lu B, Yang K, Du YY (2008) Preparation of the UPOV guidelines for the conduct of tests for distinctness, uniformity and stability-Tea plant [Camellia sinensis (L.) O. Kuntze]. Agric Sci China 7(2):224–231Google Scholar
  27. Chen M-M, Feng F, Sui1 X, Han S (2010) Genetic linkage maps of Pinus koraiensis Sieb. et Zucc. based on AFLP markers. Afr J Biotechnol 9(35):5659–5664Google Scholar
  28. Cloutier S, Cappadocia M, Landry BS (1997) Analysis of RFLP mapping inaccuracy in Brassica napus L. Theor Appl Genet 95:83–91CrossRefGoogle Scholar
  29. Collard BCY, Jahufer MZZ, Bronwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement. The basic concepts. Euphytica 142:169–196CrossRefGoogle Scholar
  30. Debnath S, Paul AK (1994) Susceptibility of tea cultivars to blister blight disease and some of their anatomical and morphological characters. Two Bud 41:48–49Google Scholar
  31. Devarumath RM, Nandy S, Rani V, Marimuthu S, Muraleedharan N, Raina SN (2002) RAPD, ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity of micropropagated plants of three diploid and triploid elite tea clones representing Camellia sinensis (China type) and C. assamica ssp. Assamica (Assam-India type). Plant Cell Rep 21:166–173CrossRefGoogle Scholar
  32. Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758PubMedGoogle Scholar
  33. Fang WP, Jlang CJ, Yu M, Ye AH, Wang ZX (2006) Differentially expression of Tua1, a Tubulin-encoding gene, during flowering of tea plant Camellia sinensis (L.) O. Kuntze using cDNA Amplified Fragment Length Polymorphism technique. Acta Biochim Biophys Sin 38(9):653–662PubMedCrossRefGoogle Scholar
  34. Freeman S, West J, James C, Lea V, Mayes S (2004) Isolation and characterization of highly polymorphic microsatellites in tea (Camellia sinensis). Mol Ecol Notes 4:324–326CrossRefGoogle Scholar
  35. Freeman J, Potts BM, Shepherd M, Vaillancourt RE (2006) Parental and consensus linkage maps of Eucalyptus globulus using AFLP and microsatellite markers. Silvae Genetica 55:202–217Google Scholar
  36. Gebhardt CET, Debeneu R, Schachtschabel U, Walkemeier B et al (1989) RFLP analysis and linkage mapping in Solanum tuberosum. Theor Appl Genet 78:65–75PubMedCrossRefGoogle Scholar
  37. Giovanonni J, Wing R, Tanksley SD (1992) Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res 19:6553–6558CrossRefGoogle Scholar
  38. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and E. urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137Google Scholar
  39. Gulati A, Gulati A, Ravindranath SD, Chakrabarty DN (1993) Economic yield losses caused by Exobasidium vexansin tea planta-tions. Indian Phytopathol 46:155–159Google Scholar
  40. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185CrossRefGoogle Scholar
  41. Gysel AV, Montagu MA, Breyne P (1996) Applications of AFLP in marker-assisted breeding plant genetics. In: Crouch JH, Tenkouano A (eds) DNA markerassisted improvement of the staple crops of Sub-Saharan Africa. Proceedings of the workshop on DNA markers at IITA held by the crop improvement division, IITA, Ibadan, Nigeria, 21–22 Aug 1996, pp 16–21Google Scholar
  42. Hackett CA, Wachira FN, Paul S, Powell W, Waugh R (2000) Construction of a genetic linkage map for Camellia sinensis (tea). Heredity 85:346–355PubMedCrossRefGoogle Scholar
  43. Halldén C, Hansen M, Nilsson N-O, Hjerdin A, Säll T (1996) Competition as a source of errors in RAPD analysis. Theor Appl Genet 93:1185–1192PubMedCrossRefGoogle Scholar
  44. Hamada H, Petrino MG, Kakunaga T (1982) A novel repeated element with Z-DNA forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Nat Acad Sci USA 79:6465–6469PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) Molecular marker linkage map for apple. J Hered 85:4–11PubMedGoogle Scholar
  46. Heun M, Helentjaris T (1993) Inheritance of RAPDs in F1 hybrids of corn. Theor Appl Genet 85:961–968PubMedCrossRefGoogle Scholar
  47. Hu C-Y, Lee T-C, Tsai H-T, Tsai Y-Z, Lin S-F (2013) Construction of an integrated genetic map based on maternal and paternal lineages of tea (Camellia sinensis). Euphytica. doi:  10.1007/s10681-013-0908-0
  48. Huang JA, Li JX, Huang YH, Luo JW, Gong ZH, Liu ZH (2005) Construction of AFLP molecular markers linkage map in tea plant. J Tea Sci 25:7–15Google Scholar
  49. Huang FP, Liang YR, Lu JL, Chen RB (2006) Genetic mapping of first generation of backcross in tea by RAPD and ISSR markers. J Tea Sci 26:171–176Google Scholar
  50. Hung CY, Wang KH, Huang CC, Gong X, Ge XJ, Chiang TY (2008) Isolation and characterization of 11 microsatellite loci from Camellia sinensis in Taiwan using PCR-based isolation of microsatellite arrays (PIMA). Conserv Genet 9:945–947CrossRefGoogle Scholar
  51. Hunt GJ, Page RE (1992) Patterns of inheritance with RAPD molecular markers reveal novel types of polymorphism in the honey bee. Theor Appl Genet 85:15–20PubMedCrossRefGoogle Scholar
  52. Husband BC, Schemske DW (1996) Evolution of magnitude and timing of inbreeding depression in plants. Evolution 50:554–570CrossRefGoogle Scholar
  53. Iwata H, Ninomiya S (2006) AntMap: Constructing genetic linkage maps using an ant colony optimization algorithm. Breed Sci 56:371–377CrossRefGoogle Scholar
  54. Jacob HJ, Lindpainter K, Lincoln SE, Kusumi K, Bunnker RK, Mao YP, Ganter D, Dzau VJ, Lander ES (1991) Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67:213–224PubMedCrossRefGoogle Scholar
  55. Jansen J (2005) Construction of linkage maps in full-sib families of diploid outbreeding species by minimizing the number of recombinations in hidden inheritance vectors. Genetics 170:2013–2025PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jayaramraja PR, Pius PK, Manian S, Nithya MS (2006) Certain factors associated with blister blight resistance in Camellia sinensis (L.) O. Kuntze. Physiol Molec Plant Patho 67:291–295CrossRefGoogle Scholar
  57. Jenczewski E, Gherardi M, Bonnin I, Prosperi JM, Olivieri I, Huguet T (1997) Insight on segregation distortions in two intraspecific crosses between annual species of Medicago (Leguminosae). Theor Appl Genet 94:682–691CrossRefGoogle Scholar
  58. Kamunya SM, Wachira FN, Pathak RS, Korir R, Sharma V, Kumar R, Bhardwaj P, Chalo R, Ahuja PS, Sharma RK (2010) Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze). Tree Genet Genomes 6:915–929CrossRefGoogle Scholar
  59. Kaneko S, Ozawa A, Saito T, Tatara A, Katayama H, Doi M (2006) Relationship between the seasonal prevalence of the predacious coccinellid Pseudoscymnus hareja (Coleoptera: Coccinellidae) and the mulberry scale Pseudaulacaspis pentagona (Hemiptera: Diaspididae) in tea fields: monitoring using sticky traps. Appl Entomol Zool 41(4):621–626CrossRefGoogle Scholar
  60. Karthigeyan S, Rajkumar S, Sharma RK, Gulati A, Sud RK, Ahuja PS (2008) High level of genetic diversity among the selected accessions of tea (Camellia sinensis) from abandoned tea gardens in western Himalaya. Biochem Genet 46:810–819PubMedCrossRefGoogle Scholar
  61. Kaundun SS, Matsumoto S (2003) Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze and differentiation between assamica and sinensis varieties. Tree Genet Genomes 106:375–383Google Scholar
  62. Kijas JMH, Fowler JCS, Garbett CA, Thomas MR (1994) Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin coated magnetic particles. Biotechniques 16:656–662PubMedGoogle Scholar
  63. Kullan ARK, van Dyk MM, Jones N, Kanzler A, Bayley A, Myburg AA (2012) High-density genetic linkage maps with over 2400 sequence-anchored DArT markers for genetic dissection in an F2 pseudo-backcross of Eucalyptus grandis × E. urophylla. Tree Genet Genomes 8:163–175CrossRefGoogle Scholar
  64. Kwong-Robbins C (2005) Tea time: have you had your tea yet? US Pharmacol 10:47–50Google Scholar
  65. Lashermes P, Combes MC, Prakash NS, Trouslot P, Lorieux M, Charrier A (2001) Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome 44:589–596PubMedCrossRefGoogle Scholar
  66. Lerceteau E, Plomion C, Andersson B (2000) AFLP mapping and detection of quantitative trait loci (QTLs) for economically important traits in Pinus sylvestris: a preliminary study. Mol Breed 6:451–458CrossRefGoogle Scholar
  67. Loh PJ, Kiew R, Set O, Gan LH, Gan YY (2000) A study of genetic variation and relationships within the Bamboo sub-tribe Bambusinae using amplified fragment length polymorphism. Ann Bot 85:607–612CrossRefGoogle Scholar
  68. Longley AE, Tourje EC (1959) Chromosome numbers of certain Camellia species and allied genera. Am Camellia Yb, 33–39Google Scholar
  69. Lu Q, Cui Y, Wu R (2004) A multilocus likelihood approach to joint modeling of linkage, parental diplotype and gene order in a full-sib family. BMC Genet 5:20PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lui B (1998) Statistical genomics: linkage, mapping and QTL analysis. CRC Press, Boca RatonGoogle Scholar
  71. Ma JQ, Zhou YH, Ma CL, Yao MZ, Jin JQ, Wang XC, Liang C (2010) Identification and characterization of 74 novel polymorphic EST-SSR markers in the tea plant, Camellia sinensis (Theaceae) Am J Bot. doi: 10.3732/ajb.1000376
  72. Ma JQ, Yao MZ, Ma CL, Wang XC, Jin JQ, Wang XM, Chen WL (2014) Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis). PLoS ONE 9(3):93131CrossRefGoogle Scholar
  73. Maliepaard C, Jansen J, Van Ooijen JW (1997) Linkage analysis in a full-sib family of an outbreeding species: overview and consequences for applications. Genet Res 70:237–250CrossRefGoogle Scholar
  74. Marques CM, Araújo JA, Ferreira JG, Whetten R, O’Malley DM, Liu B-H, Sederoff R (1998) AFLP genetic maps of Eucalyptus globulus and E. tereticornis. Theor Appl Genet 96:727–737CrossRefGoogle Scholar
  75. Michelmore R, Paran I, Kesseli RV (1991) Identification of marker linked to disease resistance gene by bulk segregant analysis: a rapid mathod to detect markers in specific genomic regions using segregating populations. Proc Nat Acad Sci USA 88:9828–9832PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mignouna HD, Fatokun CA, Thottappilly G (1996) Choice of DNA marker system. In: Crouch JH, Tenkouano A (eds) DNA marker-assisted improvement of the staple crops of Sub-Saharan Africa. Proceedings of the workshop on DNA markers at IITA held by the crop improvement division, IITA, Ibadan, Nigeria, 21–22 Aug 1996Google Scholar
  77. Ming T (2000) Monograph of the genus Camellia. Chinese Academy of Sciences, Yunnan Science and Technology Press, Kunming Institute of Botany, KunmingGoogle Scholar
  78. Mishra RK, Sen-Mandi S (2004) Molecular profiling and development of DNA marker associated with drought tolerance in tea clones growing in Darjeeling. Curr Sci 87(1):60–66Google Scholar
  79. Mondal TK (2009) Tea. Compendium of Transgenic. Crop Plant 99–116Google Scholar
  80. Novy RG, Vorsa N (1996) Evidence for RAPD heteroduplex formation in cranberry: implications for pedigree and genetic-relatedness studies and a source of co-dominant RAPD markers. Theor Appl Genet 92:840–849PubMedCrossRefGoogle Scholar
  81. Paul S, Wachira FN, Powell W, Waugh R (1997) Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor Appl Genet 94(2):255–263CrossRefGoogle Scholar
  82. Perfectti F, Pascual L (1996) Segregation distortion of isozyme loci in cherimoya (Annona cherimola Mill). Theor Appl Genet 93:440–446PubMedCrossRefGoogle Scholar
  83. Plomion C, Bousquet J, Cole CD (2011) Mapping in conifers. In: Genetics, genomics and breeding of conifer trees, Edenbridge Science Publishers and RC Press, New York, pp 196–238Google Scholar
  84. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238CrossRefGoogle Scholar
  85. Prince LM, Parks CR (2001) Phylogenetic relationships of Theaceae Inferred from chloroplast DNA sequence. Am J Bot 88(12):2309–2320PubMedCrossRefGoogle Scholar
  86. Raina SN, Ahuja PS, Sharma RK, Das SC, Bhardwaj P, Negi R, Sharma V, Singh SS, Sud RK, Kalia RK, Pandey V, Banik J, Razdan V, Sehgal D, Dar TH, Kumar A, Bali S, Bhat V, Sharma S, Prasanna BM, Goel S, Negi MS, Vijayan P, Tripathi SB, Bera B, Hazarika M, Mandal AKA, Kumar RR, Vijayan D, Ramkumar S, Chowdhury BR, Mandi SS (2012) Genetic structure and diversity of India hybrid tea. Genet Resour Crop Evol 59:1527–1541CrossRefGoogle Scholar
  87. Reineke A, Karlovsky P (2000) Simplified AFLP protocol: replacement of primer labeling by the incorporation of α-labeled nucleotides during PCR. Biotechniques 28:622–623PubMedGoogle Scholar
  88. Riedy MF, Hamilton WJ III, Aquadro CF (1992) Excess of non-parental bands in offspring from known primate pedigrees assayed using RAPD PCR. Nucleic Acids Res 20:918PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ritter E, Gebhardt C, Salamin F (1990) Estimation of recombination frequencies and construction of linkage maps from crosses between heterozygous parents. Genetics 125:645–654PubMedPubMedCentralGoogle Scholar
  90. Scott MP, Haymes KM, Williams SM (1992) Parentage analysis using RAPD PCR. Nucleic Acids Res 20:5493PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sealy J (1958) A revision of the genus Camellia. Royal Horticultural Society, LondonGoogle Scholar
  92. Sharma VS, Venkataramani KS (1971) The tea complex. 1. Taxonomy of tea clones. Proced Indian Acad Sci 53:178–187Google Scholar
  93. Sharma VS, Dawson IK, Waugh R (1995) Relationships among cultivated and wild lentils revealed by RAPD analysis. Theor Appl Genet 91:647–654PubMedCrossRefGoogle Scholar
  94. Sharma RK, Bhardwaj P, Negi R, Mohapatra T, Ahuja PS (2009) Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.). BMC Plant Biol 9:53PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sharma RK, Negi MS, Sharma S, Bhardwaj P, Kumar R, Bhattachrya E, Tripathi SB, Vijayan D, Baruah AR, Das SC, Bera B, Rajkumar R, Thomas J, Sud RK, Muraleedharan N, Hazarika M, Lakshmikumaran M, Raina SN, Ahuja PS (2010) AFLP-based genetic diversity assessment of commercially important tea germplasm in India. Biochem Genet 48:549–564PubMedCrossRefGoogle Scholar
  96. Sharma V, Bhardwaj P, Kumar R, Sharma RK, Sood A, Ahuja PS (2011a) Identification and cross-species amplification of EST derived SSR markers in different bamboo species. Conserv Genet 10:721–724CrossRefGoogle Scholar
  97. Sharma H, Kumar R, Sharma V, Kumar V, Bhardwaj P, Ahuja PS, Sharma RK (2011b) Identification and cross transferability of 112 novel unigene derived microsatellite markers in tea (Camellia sinensis L). Am J Bot 98:e133–e138PubMedCrossRefGoogle Scholar
  98. Shepherd M, Cross M, Dieters MJ, Henry R (2003) Genetic maps for Pinus elliottii var. elliottii and P. caribaea var. hondurensis using AFLP and microsatellite markers. Tree Genet Genomes 106:1409–1419Google Scholar
  99. Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li yY, Chen Q, Xia T, Wan XC (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genome 12:131CrossRefGoogle Scholar
  100. Simura T (1935) Cytological investigations in tea plant. A preliminary report. Proc Crop Sci Soc Jpn 7:121–133CrossRefGoogle Scholar
  101. Singh ID (1980) Tea germplasm in India. Plant Genet Res News Lett 43:12–16Google Scholar
  102. Singh ID (1999) Plant improvement. In: Jain NK (ed) Global advances in tea science, pp 427–448Google Scholar
  103. Sobral BWS, Honeycut RJ (1993) High output genetic mapping of polyploids using PCR-generated markers. Theor Appl Genet 86:105–112PubMedCrossRefGoogle Scholar
  104. Takeda M (2004) Effects of temperature on oviposition in overwintering females and hatch in first-generation larvae of Pseudaulacaspis pentagona (Hemiptera: Diaspididae). Appl Entomol Zool 39(1):15–26CrossRefGoogle Scholar
  105. Tanaka J (1996) RAPD linkage map of tea plant and the possibility of application in tea genetics and breeding. Tea Res J 84:44–45Google Scholar
  106. Tanaka J, Taniguchi F (2007) Genome mapping and molecular breeding in plant, vol 6. Chapter 6: Tea. ISBN: 13 978-3-540-34537-4, pp 119–126Google Scholar
  107. Taniguchi F, Furukawa K, Ota-Metoku S, Yamaguchi N, Ujihara T, Kono I, Fukuoka H, Tanaka J (2012) Construction of a high-density reference linkage map of tea (Camellia sinensis). Breed Sci 62:263–273PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138PubMedPubMedCentralCrossRefGoogle Scholar
  109. Ueno S, Tsumura Y (2009) Development of microsatellite and amplicon length polymorphism markers for Camellia japonica L. from tea plant (Camellia sinensis) expressed sequence tags. Mol Ecol Resour 9:814–816Google Scholar
  110. Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93:343–349CrossRefGoogle Scholar
  111. Van Os H (2005) The construction of an ultra-dense genetic linkage map of potato. Wageningen University, The NetherlandsGoogle Scholar
  112. Verhaegen D, Plomion C (1996) Genetic mapping in Eucalyptus urophylla and Eucalyptus grandis using RAPD markers. Genome 39:1051–1061PubMedCrossRefGoogle Scholar
  113. Virk PS, Ford-Lloyd BV, Newbury HJ (1998) Mapping AFLP markers associated with subspecific differentiation of Oryza sativa (rice) and an investigation of segregation distortion. Heredity 81:613–620CrossRefGoogle Scholar
  114. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wachira FN (1991) Newly identified Kenyan polyploid tea strains. Tea. 12:10–13Google Scholar
  116. Wachira FN (2002) Genetic mapping of tea. A review of achievements and opportunities. Tea 23(2):91–102Google Scholar
  117. Wachira FN, Waugh R, Hackett CA, Powell W (1995) Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome 38:201–210PubMedCrossRefGoogle Scholar
  118. Wachira FN, Tanaka J, Takeda Y (2001) Genetic variation and differentiation in tea (Camellia sinensis) germplasm revealed by RAPD and AFLP variation. J Hortic Sci Biotechnol 76:557–563Google Scholar
  119. Weising K, Nybom H, Wolff K, Kahl G (2005) DNA fingerprinting in plants. Principles, methods, and applications, 2nd edn. CRC Press, Taylor and Group, 444 pGoogle Scholar
  120. Wenger JW, Schwartz K, Sherlock G (2010) Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 6:e1000942PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wight W (1962) Tea classification revised. Curr Sci 31:298–299Google Scholar
  122. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6513–6653Google Scholar
  123. Williams JGK, Rafalski JA, Tingey SV (1993) Genetic analysis using RAPD markers. In: Wu R (ed) Methods in enzymology, vol 218. Academic Press, London, pp 704–740Google Scholar
  124. Wu K, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241:225–235PubMedCrossRefGoogle Scholar
  125. Wu CD, Wei GX (2002) Tea as a functional food for oral health. Nutrition 18:443–444PubMedCrossRefGoogle Scholar
  126. Wu L, Joshi CP, Chiang VL (2000) A xylem specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress. Plant J 22:495–502PubMedCrossRefGoogle Scholar
  127. Wu H, Chen D, Li J, Yu B, Qiao X et al (2013) De novo characterization of leaf transcriptome using 454 sequencing and development of EST-SSR markers in tea (Camellia sinensis). Plant Mol Biol Rep 31:524–538CrossRefGoogle Scholar
  128. Xu S, Hu Z (2009) Mapping quantitative trait loci using distorted markers. Int J Plant Genomics 2009:1–11Google Scholar
  129. Yang HY, Korban SS, Kruger J, Schmidt H (1997) The use of a modified bulk segregant analysis to identify a molecular marker linked to a scab resistance gene in apple. Euphytica 94:175–182CrossRefGoogle Scholar
  130. Yang JB, Yang J, Li HT, Zhao Y, Yang SX (2009) Isolation and characterization of 15 microsatellite markers from wild tea plant (Camellia taliensis) using FIASCO method. Conserv Genet 10:1621–1623CrossRefGoogle Scholar
  131. Yin TM, DiFazio SP, Gunter LE, Riemenshneider D, Tuskan GA (2004) Large scale heterospecific segregation distortion in Populus revealed by a dense genetic linkage map. Theor Appl Genet 109:451–463PubMedCrossRefGoogle Scholar
  132. Zhan Z, Ke N, Chen B (1987) The cytology of tea clonal cultivars fujian shuixian and their infertile mechanism. In: Proceedings of international tea quality. Human health symposium, China, p 46Google Scholar
  133. Zhao LP, Liu Z, Chen EL, Yao EMZ, Wang EXC (2008) Generation and characterization of 24 novel EST derived microsatellites from tea plant (Camellia sinensis) and cross-species amplification in its closely related species and varieties. Conserv Genet 9:1327–1331CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rahul Kumar
    • 1
    • 2
  • Kuldip
    • 1
  • Paramvir Singh Ahuja
    • 1
  • Ram Kumar Sharma
    • 1
  1. 1.Biotechnology DivisionCSIR-Institute of Himalayan Bioresource Technology, (Council of Scientific & Industrial Research)PalampurIndia
  2. 2.DAV UniversityJalandharIndia

Personalised recommendations