Skip to main content

Status and Opportunities of Molecular Breeding Approaches for Genetic Improvement of Tea

  • Chapter
  • First Online:
Molecular Breeding for Sustainable Crop Improvement

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 11))

  • 1670 Accesses

Abstract

Tea is the most popular perennial plantation crop in the Southeast Asian countries because of its attractive aroma, taste, and health benefits. Tea plantations provides an important agro-based, eco-friendly employment generating and export oriented industries in all the tea-growing countries. However, the future of tea industry depends on the availability of high-yielding and high-quality tea clones with greater tolerance to pest, diseases, and environmental stresses. Genetic improvement of tea involves identification, characterization, evaluation, domestication, maintenance, and utilization of germplasm for the development of superior plant material. Conventional breeding program in tea is, however, limited by long gestation period, outbreeding nature, and self-incompatibility. This chapter summarizes the status of emerging molecular genomic information that can expedite the genetic improvement in tea and hence the productivity too. This will also provide a background for possibilities of modern tea breeding together with some current efforts for the development of sequence-based markers such as microsatellites, single-nucleotide polymorphisms (SNPs) and links genetic diversity of existing gene pools for the identification of diverse parental groups and efficient phenotyping to support operational breeding. Preliminary attempts on quantitative trait locus (QTL) mapping in tea were also reviewed, and prospectives are also provided on power of association genetics to dissect quantitative traits. Challenges and opportunities to integrate advancement and advent of next-generation sequencing (NGS) technologies to generate genome-wide makers and to integrate genomic information into directional selective breeding are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves A, Rosado C, Faria D, Guimarães L, Lau D, Brommonschenkel S, Grattapaglia D, Alfenas A (2012) Genetic mapping provides evidence for the role of additive and non-additive QTLs in the response of inter-specific hybrids of Eucalyptus to Puccinia psidii rust infection. Euphytica 183:27–38

    Article  CAS  Google Scholar 

  • Arcade A, Anselin F, Faivre Rampant P, Lesage MC, Paques LE, Prat D (2000) Application of AFLP, RAPD and ISSR markers to genetic mapping of European and Japanese larch. Theor Appl Genet 100:299–307

    Article  CAS  Google Scholar 

  • Ardiel GS, Grewal TS, Deberdt P, Rossnagel BG, Scoles GJ (2002) Inheritance of resistance to covered smut in barley and development of a tightly linked SCAR marker. Theor Appl Genet 104:457–464

    Article  CAS  PubMed  Google Scholar 

  • Arulpragasam PV (1992) Disease contrl in Asia. In: Wilson KC, Cliffor MN (eds) Tea cultivation to consumption. Chapman and Hall, London, pp 353–374

    Google Scholar 

  • Ayliffe MA, Lawrence GJ, Ellis JG, Pryor AJ (1994) Heteroduplex molecules formed between allelic sequences cause nonparental RAPD bands. Nucleic Acids Res 22:1632–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee B (1992) Botanical classification of tea. In: Wilson KC, Clifford MN (eds) Tea: cultivation to consumption. Chapman and Hall, London, pp 25–52

    Chapter  Google Scholar 

  • Barreneche T, Bodénès C, Lexer C, Trontin JF, Fluch S, Streiff R, Plomion C, Roussel G, Steinkellner H, Burg K, Favre JM, Glössl J, Kremer A (1998) A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme, and 5S rDNA markers. Theor Appl Genet 97:1090–1103

    Article  CAS  Google Scholar 

  • Barua UM, Chalmers KJ, Hackett CA, Thomas WTB, Powell W, Waugh R (1993) Identification of RAPD markers linked to Rhyncosporium secalis resistance locus in barley using isogenic lines and bulked segregant analysis. Heredity 71:177–184

    Article  CAS  PubMed  Google Scholar 

  • Basu B (2002–2003) Drink tea and keep healthy. Int J Tea Sci 2(3):5–7

    Google Scholar 

  • Bezbaruah HP (1968) Genetic improvement of tea in Northeast India. Its problems as well as possibilities. Indian J Genet 28:126–134

    Google Scholar 

  • Bezbaruah HP (1971) Cytological investigation in the family Theaceae-I: chromosome numbers in some Camellia species and allied genera. Caryologia 24:421–426

    Article  Google Scholar 

  • Bhardwaj P, Kumar R, Sharma H, Ahuja PS, Sharma RK (2013) Development and utilization of genomic and genic microsatellite markers in Assam tea (Camellia assamica spp. assamica) and related Camellia species. Plant Breed 132:748–763

    Article  CAS  Google Scholar 

  • Bhardwaj P, Sharma RK, Kumar R, Sharma H, Tewari R, Ahuja PS (2014) SSR marker based DNA fingerprinting and diversity assessment in superior tea germplasm

    Google Scholar 

  • Bradshaw HD Jr (1998) Case history in genetics of long-lived plants. Molecular approaches to domestication of a fast-growing forest tree. Populus. In: Paterson AH (ed) Molecular dissection of complex. CRC Press, New York, pp 219–228

    Google Scholar 

  • Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theor Appl Genet 97:816–827

    Article  CAS  Google Scholar 

  • Brondani RPV, Brondani C, Grattapaglia D (2002) Towards a genuswide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers. Mol Genet Genomics 267:338–347

    Article  CAS  PubMed  Google Scholar 

  • Brondani RPV, Williams ER, Brondani C, Grattapaglia D (2006) A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol 6:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bundock PC, Potts BM, Vaillancourt RE (2008) Detection and stability of quantitative trait loci (QTL) in Eucalyptus globulus. Tree Genet Genomes 4:85–95

    Article  Google Scholar 

  • Carlson JE, Tulsieram LK, Glaubitz JC, Luk VWK, Kauffeld C, Rutledge R (1991) Segregation of random amplified DNA markers in F1 progeny of conifers. Theor Appl Genet 83:194–200

    Article  CAS  PubMed  Google Scholar 

  • Cervera MT, Stormel V, Ivens B, Gusmão J, Liu BH, Hostyn V, Van Slyckenc J, Van Montagu M, Boerjan W (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787–809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chagne D, Lalanne C, Madur D, Kumar S, Frigerio J-M, Krier C, Decroocq S, Savoure Al, Bou-Dagher-Karrat M, Bertocchi E, Brach J, Plomion C (2002) A high density linkage map for maritime pine based on AFLPs. Ann For Sci 59:627–636

    Article  Google Scholar 

  • Chalmers KJ, Waugh R, Sprent JI, Powell W (1992) Detection of genetic variation between and within populations of Gliricidia sepium and G. maculata using RAPD markers. Heredity 69:465–472

    Article  PubMed  Google Scholar 

  • Chang HT (1981) Taxonomy of the genus Camellia. Acta Sci Nat Univ Sunyatseni Monogr Ser 1:1–180

    CAS  Google Scholar 

  • Chang HT (1998) Flora of Reipublicae Popularis Sinicae, Delectis Florae Republicae Popularis Sinicae, Agendae Academiae Sinicae Edita. Tomus 49:101–113

    Google Scholar 

  • Chang HT, Bartholomew B (1984) Camellias. Timber Press, Portland

    Google Scholar 

  • Chen L, Yu FL, Yao MZ, Lu B, Yang K, Du YY (2008) Preparation of the UPOV guidelines for the conduct of tests for distinctness, uniformity and stability-Tea plant [Camellia sinensis (L.) O. Kuntze]. Agric Sci China 7(2):224–231

    Google Scholar 

  • Chen M-M, Feng F, Sui1 X, Han S (2010) Genetic linkage maps of Pinus koraiensis Sieb. et Zucc. based on AFLP markers. Afr J Biotechnol 9(35):5659–5664

    Google Scholar 

  • Cloutier S, Cappadocia M, Landry BS (1997) Analysis of RFLP mapping inaccuracy in Brassica napus L. Theor Appl Genet 95:83–91

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Bronwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement. The basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Debnath S, Paul AK (1994) Susceptibility of tea cultivars to blister blight disease and some of their anatomical and morphological characters. Two Bud 41:48–49

    Google Scholar 

  • Devarumath RM, Nandy S, Rani V, Marimuthu S, Muraleedharan N, Raina SN (2002) RAPD, ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity of micropropagated plants of three diploid and triploid elite tea clones representing Camellia sinensis (China type) and C. assamica ssp. Assamica (Assam-India type). Plant Cell Rep 21:166–173

    Article  CAS  Google Scholar 

  • Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758

    CAS  PubMed  Google Scholar 

  • Fang WP, Jlang CJ, Yu M, Ye AH, Wang ZX (2006) Differentially expression of Tua1, a Tubulin-encoding gene, during flowering of tea plant Camellia sinensis (L.) O. Kuntze using cDNA Amplified Fragment Length Polymorphism technique. Acta Biochim Biophys Sin 38(9):653–662

    Article  CAS  PubMed  Google Scholar 

  • Freeman S, West J, James C, Lea V, Mayes S (2004) Isolation and characterization of highly polymorphic microsatellites in tea (Camellia sinensis). Mol Ecol Notes 4:324–326

    Article  CAS  Google Scholar 

  • Freeman J, Potts BM, Shepherd M, Vaillancourt RE (2006) Parental and consensus linkage maps of Eucalyptus globulus using AFLP and microsatellite markers. Silvae Genetica 55:202–217

    Google Scholar 

  • Gebhardt CET, Debeneu R, Schachtschabel U, Walkemeier B et al (1989) RFLP analysis and linkage mapping in Solanum tuberosum. Theor Appl Genet 78:65–75

    Article  CAS  PubMed  Google Scholar 

  • Giovanonni J, Wing R, Tanksley SD (1992) Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res 19:6553–6558

    Article  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and E. urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137

    Google Scholar 

  • Gulati A, Gulati A, Ravindranath SD, Chakrabarty DN (1993) Economic yield losses caused by Exobasidium vexansin tea planta-tions. Indian Phytopathol 46:155–159

    Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Gysel AV, Montagu MA, Breyne P (1996) Applications of AFLP in marker-assisted breeding plant genetics. In: Crouch JH, Tenkouano A (eds) DNA markerassisted improvement of the staple crops of Sub-Saharan Africa. Proceedings of the workshop on DNA markers at IITA held by the crop improvement division, IITA, Ibadan, Nigeria, 21–22 Aug 1996, pp 16–21

    Google Scholar 

  • Hackett CA, Wachira FN, Paul S, Powell W, Waugh R (2000) Construction of a genetic linkage map for Camellia sinensis (tea). Heredity 85:346–355

    Article  CAS  PubMed  Google Scholar 

  • Halldén C, Hansen M, Nilsson N-O, Hjerdin A, Säll T (1996) Competition as a source of errors in RAPD analysis. Theor Appl Genet 93:1185–1192

    Article  PubMed  Google Scholar 

  • Hamada H, Petrino MG, Kakunaga T (1982) A novel repeated element with Z-DNA forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Nat Acad Sci USA 79:6465–6469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) Molecular marker linkage map for apple. J Hered 85:4–11

    CAS  PubMed  Google Scholar 

  • Heun M, Helentjaris T (1993) Inheritance of RAPDs in F1 hybrids of corn. Theor Appl Genet 85:961–968

    Article  CAS  PubMed  Google Scholar 

  • Hu C-Y, Lee T-C, Tsai H-T, Tsai Y-Z, Lin S-F (2013) Construction of an integrated genetic map based on maternal and paternal lineages of tea (Camellia sinensis). Euphytica. doi: 10.1007/s10681-013-0908-0

    Google Scholar 

  • Huang JA, Li JX, Huang YH, Luo JW, Gong ZH, Liu ZH (2005) Construction of AFLP molecular markers linkage map in tea plant. J Tea Sci 25:7–15

    CAS  Google Scholar 

  • Huang FP, Liang YR, Lu JL, Chen RB (2006) Genetic mapping of first generation of backcross in tea by RAPD and ISSR markers. J Tea Sci 26:171–176

    Google Scholar 

  • Hung CY, Wang KH, Huang CC, Gong X, Ge XJ, Chiang TY (2008) Isolation and characterization of 11 microsatellite loci from Camellia sinensis in Taiwan using PCR-based isolation of microsatellite arrays (PIMA). Conserv Genet 9:945–947

    Article  CAS  Google Scholar 

  • Hunt GJ, Page RE (1992) Patterns of inheritance with RAPD molecular markers reveal novel types of polymorphism in the honey bee. Theor Appl Genet 85:15–20

    Article  CAS  PubMed  Google Scholar 

  • Husband BC, Schemske DW (1996) Evolution of magnitude and timing of inbreeding depression in plants. Evolution 50:554–570

    Article  Google Scholar 

  • Iwata H, Ninomiya S (2006) AntMap: Constructing genetic linkage maps using an ant colony optimization algorithm. Breed Sci 56:371–377

    Article  Google Scholar 

  • Jacob HJ, Lindpainter K, Lincoln SE, Kusumi K, Bunnker RK, Mao YP, Ganter D, Dzau VJ, Lander ES (1991) Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67:213–224

    Article  CAS  PubMed  Google Scholar 

  • Jansen J (2005) Construction of linkage maps in full-sib families of diploid outbreeding species by minimizing the number of recombinations in hidden inheritance vectors. Genetics 170:2013–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaramraja PR, Pius PK, Manian S, Nithya MS (2006) Certain factors associated with blister blight resistance in Camellia sinensis (L.) O. Kuntze. Physiol Molec Plant Patho 67:291–295

    Article  CAS  Google Scholar 

  • Jenczewski E, Gherardi M, Bonnin I, Prosperi JM, Olivieri I, Huguet T (1997) Insight on segregation distortions in two intraspecific crosses between annual species of Medicago (Leguminosae). Theor Appl Genet 94:682–691

    Article  Google Scholar 

  • Kamunya SM, Wachira FN, Pathak RS, Korir R, Sharma V, Kumar R, Bhardwaj P, Chalo R, Ahuja PS, Sharma RK (2010) Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze). Tree Genet Genomes 6:915–929

    Article  Google Scholar 

  • Kaneko S, Ozawa A, Saito T, Tatara A, Katayama H, Doi M (2006) Relationship between the seasonal prevalence of the predacious coccinellid Pseudoscymnus hareja (Coleoptera: Coccinellidae) and the mulberry scale Pseudaulacaspis pentagona (Hemiptera: Diaspididae) in tea fields: monitoring using sticky traps. Appl Entomol Zool 41(4):621–626

    Article  Google Scholar 

  • Karthigeyan S, Rajkumar S, Sharma RK, Gulati A, Sud RK, Ahuja PS (2008) High level of genetic diversity among the selected accessions of tea (Camellia sinensis) from abandoned tea gardens in western Himalaya. Biochem Genet 46:810–819

    Article  CAS  PubMed  Google Scholar 

  • Kaundun SS, Matsumoto S (2003) Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze and differentiation between assamica and sinensis varieties. Tree Genet Genomes 106:375–383

    CAS  Google Scholar 

  • Kijas JMH, Fowler JCS, Garbett CA, Thomas MR (1994) Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin coated magnetic particles. Biotechniques 16:656–662

    CAS  PubMed  Google Scholar 

  • Kullan ARK, van Dyk MM, Jones N, Kanzler A, Bayley A, Myburg AA (2012) High-density genetic linkage maps with over 2400 sequence-anchored DArT markers for genetic dissection in an F2 pseudo-backcross of Eucalyptus grandis × E. urophylla. Tree Genet Genomes 8:163–175

    Article  Google Scholar 

  • Kwong-Robbins C (2005) Tea time: have you had your tea yet? US Pharmacol 10:47–50

    Google Scholar 

  • Lashermes P, Combes MC, Prakash NS, Trouslot P, Lorieux M, Charrier A (2001) Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome 44:589–596

    Article  CAS  PubMed  Google Scholar 

  • Lerceteau E, Plomion C, Andersson B (2000) AFLP mapping and detection of quantitative trait loci (QTLs) for economically important traits in Pinus sylvestris: a preliminary study. Mol Breed 6:451–458

    Article  CAS  Google Scholar 

  • Loh PJ, Kiew R, Set O, Gan LH, Gan YY (2000) A study of genetic variation and relationships within the Bamboo sub-tribe Bambusinae using amplified fragment length polymorphism. Ann Bot 85:607–612

    Article  CAS  Google Scholar 

  • Longley AE, Tourje EC (1959) Chromosome numbers of certain Camellia species and allied genera. Am Camellia Yb, 33–39

    Google Scholar 

  • Lu Q, Cui Y, Wu R (2004) A multilocus likelihood approach to joint modeling of linkage, parental diplotype and gene order in a full-sib family. BMC Genet 5:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Lui B (1998) Statistical genomics: linkage, mapping and QTL analysis. CRC Press, Boca Raton

    Google Scholar 

  • Ma JQ, Zhou YH, Ma CL, Yao MZ, Jin JQ, Wang XC, Liang C (2010) Identification and characterization of 74 novel polymorphic EST-SSR markers in the tea plant, Camellia sinensis (Theaceae) Am J Bot. doi:10.3732/ajb.1000376

    Google Scholar 

  • Ma JQ, Yao MZ, Ma CL, Wang XC, Jin JQ, Wang XM, Chen WL (2014) Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis). PLoS ONE 9(3):93131

    Article  CAS  Google Scholar 

  • Maliepaard C, Jansen J, Van Ooijen JW (1997) Linkage analysis in a full-sib family of an outbreeding species: overview and consequences for applications. Genet Res 70:237–250

    Article  Google Scholar 

  • Marques CM, Araújo JA, Ferreira JG, Whetten R, O’Malley DM, Liu B-H, Sederoff R (1998) AFLP genetic maps of Eucalyptus globulus and E. tereticornis. Theor Appl Genet 96:727–737

    Article  CAS  Google Scholar 

  • Michelmore R, Paran I, Kesseli RV (1991) Identification of marker linked to disease resistance gene by bulk segregant analysis: a rapid mathod to detect markers in specific genomic regions using segregating populations. Proc Nat Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mignouna HD, Fatokun CA, Thottappilly G (1996) Choice of DNA marker system. In: Crouch JH, Tenkouano A (eds) DNA marker-assisted improvement of the staple crops of Sub-Saharan Africa. Proceedings of the workshop on DNA markers at IITA held by the crop improvement division, IITA, Ibadan, Nigeria, 21–22 Aug 1996

    Google Scholar 

  • Ming T (2000) Monograph of the genus Camellia. Chinese Academy of Sciences, Yunnan Science and Technology Press, Kunming Institute of Botany, Kunming

    Google Scholar 

  • Mishra RK, Sen-Mandi S (2004) Molecular profiling and development of DNA marker associated with drought tolerance in tea clones growing in Darjeeling. Curr Sci 87(1):60–66

    CAS  Google Scholar 

  • Mondal TK (2009) Tea. Compendium of Transgenic. Crop Plant 99–116

    Google Scholar 

  • Novy RG, Vorsa N (1996) Evidence for RAPD heteroduplex formation in cranberry: implications for pedigree and genetic-relatedness studies and a source of co-dominant RAPD markers. Theor Appl Genet 92:840–849

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Wachira FN, Powell W, Waugh R (1997) Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor Appl Genet 94(2):255–263

    Article  CAS  Google Scholar 

  • Perfectti F, Pascual L (1996) Segregation distortion of isozyme loci in cherimoya (Annona cherimola Mill). Theor Appl Genet 93:440–446

    Article  CAS  PubMed  Google Scholar 

  • Plomion C, Bousquet J, Cole CD (2011) Mapping in conifers. In: Genetics, genomics and breeding of conifer trees, Edenbridge Science Publishers and RC Press, New York, pp 196–238

    Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Prince LM, Parks CR (2001) Phylogenetic relationships of Theaceae Inferred from chloroplast DNA sequence. Am J Bot 88(12):2309–2320

    Article  CAS  PubMed  Google Scholar 

  • Raina SN, Ahuja PS, Sharma RK, Das SC, Bhardwaj P, Negi R, Sharma V, Singh SS, Sud RK, Kalia RK, Pandey V, Banik J, Razdan V, Sehgal D, Dar TH, Kumar A, Bali S, Bhat V, Sharma S, Prasanna BM, Goel S, Negi MS, Vijayan P, Tripathi SB, Bera B, Hazarika M, Mandal AKA, Kumar RR, Vijayan D, Ramkumar S, Chowdhury BR, Mandi SS (2012) Genetic structure and diversity of India hybrid tea. Genet Resour Crop Evol 59:1527–1541

    Article  CAS  Google Scholar 

  • Reineke A, Karlovsky P (2000) Simplified AFLP protocol: replacement of primer labeling by the incorporation of α-labeled nucleotides during PCR. Biotechniques 28:622–623

    CAS  PubMed  Google Scholar 

  • Riedy MF, Hamilton WJ III, Aquadro CF (1992) Excess of non-parental bands in offspring from known primate pedigrees assayed using RAPD PCR. Nucleic Acids Res 20:918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritter E, Gebhardt C, Salamin F (1990) Estimation of recombination frequencies and construction of linkage maps from crosses between heterozygous parents. Genetics 125:645–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott MP, Haymes KM, Williams SM (1992) Parentage analysis using RAPD PCR. Nucleic Acids Res 20:5493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sealy J (1958) A revision of the genus Camellia. Royal Horticultural Society, London

    Google Scholar 

  • Sharma VS, Venkataramani KS (1971) The tea complex. 1. Taxonomy of tea clones. Proced Indian Acad Sci 53:178–187

    Google Scholar 

  • Sharma VS, Dawson IK, Waugh R (1995) Relationships among cultivated and wild lentils revealed by RAPD analysis. Theor Appl Genet 91:647–654

    Article  CAS  PubMed  Google Scholar 

  • Sharma RK, Bhardwaj P, Negi R, Mohapatra T, Ahuja PS (2009) Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.). BMC Plant Biol 9:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma RK, Negi MS, Sharma S, Bhardwaj P, Kumar R, Bhattachrya E, Tripathi SB, Vijayan D, Baruah AR, Das SC, Bera B, Rajkumar R, Thomas J, Sud RK, Muraleedharan N, Hazarika M, Lakshmikumaran M, Raina SN, Ahuja PS (2010) AFLP-based genetic diversity assessment of commercially important tea germplasm in India. Biochem Genet 48:549–564

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Bhardwaj P, Kumar R, Sharma RK, Sood A, Ahuja PS (2011a) Identification and cross-species amplification of EST derived SSR markers in different bamboo species. Conserv Genet 10:721–724

    Article  CAS  Google Scholar 

  • Sharma H, Kumar R, Sharma V, Kumar V, Bhardwaj P, Ahuja PS, Sharma RK (2011b) Identification and cross transferability of 112 novel unigene derived microsatellite markers in tea (Camellia sinensis L). Am J Bot 98:e133–e138

    Article  CAS  PubMed  Google Scholar 

  • Shepherd M, Cross M, Dieters MJ, Henry R (2003) Genetic maps for Pinus elliottii var. elliottii and P. caribaea var. hondurensis using AFLP and microsatellite markers. Tree Genet Genomes 106:1409–1419

    CAS  Google Scholar 

  • Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li yY, Chen Q, Xia T, Wan XC (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genome 12:131

    Article  CAS  Google Scholar 

  • Simura T (1935) Cytological investigations in tea plant. A preliminary report. Proc Crop Sci Soc Jpn 7:121–133

    Article  Google Scholar 

  • Singh ID (1980) Tea germplasm in India. Plant Genet Res News Lett 43:12–16

    Google Scholar 

  • Singh ID (1999) Plant improvement. In: Jain NK (ed) Global advances in tea science, pp 427–448

    Google Scholar 

  • Sobral BWS, Honeycut RJ (1993) High output genetic mapping of polyploids using PCR-generated markers. Theor Appl Genet 86:105–112

    Article  CAS  PubMed  Google Scholar 

  • Takeda M (2004) Effects of temperature on oviposition in overwintering females and hatch in first-generation larvae of Pseudaulacaspis pentagona (Hemiptera: Diaspididae). Appl Entomol Zool 39(1):15–26

    Article  Google Scholar 

  • Tanaka J (1996) RAPD linkage map of tea plant and the possibility of application in tea genetics and breeding. Tea Res J 84:44–45

    Google Scholar 

  • Tanaka J, Taniguchi F (2007) Genome mapping and molecular breeding in plant, vol 6. Chapter 6: Tea. ISBN: 13 978-3-540-34537-4, pp 119–126

    Google Scholar 

  • Taniguchi F, Furukawa K, Ota-Metoku S, Yamaguchi N, Ujihara T, Kono I, Fukuoka H, Tanaka J (2012) Construction of a high-density reference linkage map of tea (Camellia sinensis). Breed Sci 62:263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno S, Tsumura Y (2009) Development of microsatellite and amplicon length polymorphism markers for Camellia japonica L. from tea plant (Camellia sinensis) expressed sequence tags. Mol Ecol Resour 9:814–816

    Google Scholar 

  • Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93:343–349

    Article  Google Scholar 

  • Van Os H (2005) The construction of an ultra-dense genetic linkage map of potato. Wageningen University, The Netherlands

    Google Scholar 

  • Verhaegen D, Plomion C (1996) Genetic mapping in Eucalyptus urophylla and Eucalyptus grandis using RAPD markers. Genome 39:1051–1061

    Article  CAS  PubMed  Google Scholar 

  • Virk PS, Ford-Lloyd BV, Newbury HJ (1998) Mapping AFLP markers associated with subspecific differentiation of Oryza sativa (rice) and an investigation of segregation distortion. Heredity 81:613–620

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wachira FN (1991) Newly identified Kenyan polyploid tea strains. Tea. 12:10–13

    Google Scholar 

  • Wachira FN (2002) Genetic mapping of tea. A review of achievements and opportunities. Tea 23(2):91–102

    Google Scholar 

  • Wachira FN, Waugh R, Hackett CA, Powell W (1995) Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome 38:201–210

    Article  CAS  PubMed  Google Scholar 

  • Wachira FN, Tanaka J, Takeda Y (2001) Genetic variation and differentiation in tea (Camellia sinensis) germplasm revealed by RAPD and AFLP variation. J Hortic Sci Biotechnol 76:557–563

    CAS  Google Scholar 

  • Weising K, Nybom H, Wolff K, Kahl G (2005) DNA fingerprinting in plants. Principles, methods, and applications, 2nd edn. CRC Press, Taylor and Group, 444 p

    Google Scholar 

  • Wenger JW, Schwartz K, Sherlock G (2010) Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 6:e1000942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wight W (1962) Tea classification revised. Curr Sci 31:298–299

    Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6513–6653

    Google Scholar 

  • Williams JGK, Rafalski JA, Tingey SV (1993) Genetic analysis using RAPD markers. In: Wu R (ed) Methods in enzymology, vol 218. Academic Press, London, pp 704–740

    Google Scholar 

  • Wu K, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241:225–235

    Article  CAS  PubMed  Google Scholar 

  • Wu CD, Wei GX (2002) Tea as a functional food for oral health. Nutrition 18:443–444

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Joshi CP, Chiang VL (2000) A xylem specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress. Plant J 22:495–502

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Chen D, Li J, Yu B, Qiao X et al (2013) De novo characterization of leaf transcriptome using 454 sequencing and development of EST-SSR markers in tea (Camellia sinensis). Plant Mol Biol Rep 31:524–538

    Article  CAS  Google Scholar 

  • Xu S, Hu Z (2009) Mapping quantitative trait loci using distorted markers. Int J Plant Genomics 2009:1–11

    Google Scholar 

  • Yang HY, Korban SS, Kruger J, Schmidt H (1997) The use of a modified bulk segregant analysis to identify a molecular marker linked to a scab resistance gene in apple. Euphytica 94:175–182

    Article  Google Scholar 

  • Yang JB, Yang J, Li HT, Zhao Y, Yang SX (2009) Isolation and characterization of 15 microsatellite markers from wild tea plant (Camellia taliensis) using FIASCO method. Conserv Genet 10:1621–1623

    Article  CAS  Google Scholar 

  • Yin TM, DiFazio SP, Gunter LE, Riemenshneider D, Tuskan GA (2004) Large scale heterospecific segregation distortion in Populus revealed by a dense genetic linkage map. Theor Appl Genet 109:451–463

    Article  CAS  PubMed  Google Scholar 

  • Zhan Z, Ke N, Chen B (1987) The cytology of tea clonal cultivars fujian shuixian and their infertile mechanism. In: Proceedings of international tea quality. Human health symposium, China, p 46

    Google Scholar 

  • Zhao LP, Liu Z, Chen EL, Yao EMZ, Wang EXC (2008) Generation and characterization of 24 novel EST derived microsatellites from tea plant (Camellia sinensis) and cross-species amplification in its closely related species and varieties. Conserv Genet 9:1327–1331

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledged funding from CSIR-PLOMICS and DBT Tea projects. The Director of CSIR-IHBT is acknowledged for providing necessary facilities. This is IHBT communication No. 3863.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kumar Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, R., Kuldip, Ahuja, P.S., Sharma, R.K. (2016). Status and Opportunities of Molecular Breeding Approaches for Genetic Improvement of Tea. In: Rajpal, V., Rao, S., Raina, S. (eds) Molecular Breeding for Sustainable Crop Improvement. Sustainable Development and Biodiversity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-27090-6_5

Download citation

Publish with us

Policies and ethics