Harnessing Apomixis for Heterosis Breeding in Crop Improvement

  • Sazda Abdi
  • Shashi
  • Anuj Dwivedi
  • Vishnu BhatEmail author
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 11)


Apomixis is an asexual mode of reproduction through seeds where embryo develops without undergoing meiosis and fertilization of gametes. Majority of natural apomicts are polyploids and thought to have evolved through hybridization and polyploidization. Apomixis is highly desirable for agriculture as it fixes hybridity or heterosis. Apomicts form huge polyploid complexes in nature which are the results of their facultative nature. They harbor enormous amount of variability resulting in cytotypes. Majority of the crop plants do not reproduce through apomixis although few wild relatives of crop plants such as Pennisetum glaucum and Zea mays reproduce asexually. Harnessing apomixis for heterosis breeding of crop plants through introgression of this trait from tertiary to primary gene pool was not possible due to imprinting barriers. Deviation in endosperm balance number from the male and female parents during introgression caused poor seed set in Pennisetum and Zea mays hybrids. Apomicts exhibit three major developmental variations from normal sexual reproduction, viz. apomeiosis, parthenogenesis, and autonomous endosperm development. Initial studies indicated that all the three components are governed by a single or a few genes which was later refuted owing to recombinants showing independent events. Thus, genetics of apomixis is very complex and is often riddled with large-scale segregation distortions. In many apomictic grasses, transmission of apomixis is through a physically large, hemizygous, non-recombining genomic region. One of the genes from an apospory-specific genomic region (ASGR) of Pennisetum squamulatum, namely BABY BOOM LIKE, elicited parthenogenetic development of embryo in the sexual pearl millet. Unraveling of genetic and molecular mechanisms controlling apomixis could revolutionize the way agriculture is practiced.


Apospory Diplospory Agamic complex Apomeiosis Parthenogenesis 


  1. Aguilera PM, Galdeano F, Quarin CL, Pablo J, Ortiz A, Espinoza F (2015) Inheritance of aposporous apomixis in interspecific hybrids derived from sexual Paspalum plicatulum and apomictic Paspalum guenoarum. Crop Sci 55:1947–1956CrossRefGoogle Scholar
  2. Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE, Hanna WW, Ozias-Akins P (2004) High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. Plant Physiol 134:1733–1741PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akiyama Y, Goel S, Conner JA, Hanna WW, Yamada-Akiyama H, Ozias-Akins P (2011) Evolution of the apomixis transmitting chromosome in Pennisetum. BMC Evol Biol 11:289PubMedPubMedCentralCrossRefGoogle Scholar
  4. Albertini E, Barcaccia G, Porceddu A, Sorbolini S, Falcinelli M (2001a) Mode of reproduction is detected by Parth1 and Sex1 SCAR markers in a wide range of facultative apomictic Kentucky bluegrass varieties. Mol Breed 7:293–300CrossRefGoogle Scholar
  5. Albertini E, Porceddu A, Ferranti F, Reale L, Barcaccia G et al (2001b) Apospory and parthenogenesis may be uncoupled in Poa pratensis: a cytological investigation. Sex Plant Reprod 14:213–217PubMedCrossRefGoogle Scholar
  6. Asker S (1980) Gametophytic apomixis: elements and genetic regulation. Hereditas 93:277–293CrossRefGoogle Scholar
  7. Asker S, Jerling L (1992) Apomixis in plants. CRC Press, LondonGoogle Scholar
  8. Babcock EB, Stebbins GL (1938) The American species of Crepis: Their relationships and distribution as affected by polyploidy and apomixis. Carnegie Inst Wash Publ 504:1–200Google Scholar
  9. Barcaccia G, Mazzucato A, Albertini E, Zethof J, Gerats A et al (1998) Inheritance of parthenogenesis in Poa pratensis L.: auxin test and AFLP linkage analyses support monogenic control. Theor Appl Genet 97:74–82CrossRefGoogle Scholar
  10. Battaglia E (1948) Ricerche sulla parameiosi restitzionale nel genere Taraxacum. Caryologia 1:1–47Google Scholar
  11. Bayer RJ (1987) Evolution and phylogenetic relationships of the Antennaria (Asteraceae: Inuleae) polyploid agamic complex. Biologie Zentralblatt 106:683–698Google Scholar
  12. Bergman B (1941) Studies on the embryo sac mother cell and its development in Hieracium (subg.) Archieracium. Svensk Bot Tidskr 35:1–41Google Scholar
  13. Berthaud J (2001) Apomixis and the management of genetic diversity. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT, IRD, Mexico DF, pp 8–23Google Scholar
  14. Berthaud J, Savidan Y (1989) Genetic resources of Tripsacum and gene transfer to maize. In: Mujeeb-Kazi A, Sitch LA (eds) Review of advances in plant biotechnology, 1985–1988. 2nd international symposium on genetic manipulation in crops. CIMMYT and IRRI, Mexico DF, Mexico and Manila Philippines, pp 121130Google Scholar
  15. Bhat V, Dwivedi KK, Khurana JP, Sopory SK (2005) Apomixis: an enigma with potential applications. Curr Sci 89:1879–1893Google Scholar
  16. Bicknell R, Catanach A (2015) Apomixis: the asexual formation of seed. In: Li X-Q, et al (eds) Somatic genome manipulation. LLC 2015. Springer Science & Business Media, Berlin. doi: 10.1007/978-1-4939-2389-2_7
  17. Bicknell RA, Borst NK, Koltunow AM (2000) Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity 84:228–237PubMedCrossRefGoogle Scholar
  18. Brock MT (2004) The potential for genetic assimilation of a native dandelion species, Taraxacum ceratophorum (Asteraceae), by the exotic congener T. officinale. Am J Bot 91:656–663PubMedCrossRefGoogle Scholar
  19. Brown WF, Emery WH (1958) Apomixis in the Gramineae: panicoideae. Am J Bot 45:253–263CrossRefGoogle Scholar
  20. Burson BL, Voigt PW, Sherman RA, Dewald CL (1990) Apomixis and sexuality in Eastern Gamagrass. Crop Sci 30:86–89CrossRefGoogle Scholar
  21. Caceres ME, Matzk F, Busti A, Pupilli F, Arcioni S (2001) Apomixis and sexuality in Paspalum simplex: characterization of the mode of reproduction in segregating progenies by different methods. Sex Plant Reprod 14:201–206PubMedCrossRefGoogle Scholar
  22. Calderini O, Chang S, de Jong H, Busti A, Paolocci F et al (2006) Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice. Theor Appl Genet 112:1179–1191PubMedCrossRefGoogle Scholar
  23. Campbell CS, Alice LA, Wright WA (1999) Comparisons of within population genetic variation in sexual and agamospermus Amelanchier (Rosaceae) using RAPD markers. Plant Syst Evol 215:157–167CrossRefGoogle Scholar
  24. Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61:51–94CrossRefGoogle Scholar
  25. Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci USA 103:18650–18655PubMedPubMedCentralCrossRefGoogle Scholar
  26. Celarier RP, Harlan JR (1958) The cytogeography of the Bothriochloa ischaemum complex. I. Taxonomy and geographic distribution. J Linn Soc London Bot 55:755–760CrossRefGoogle Scholar
  27. Celarier RP, Mehra KL, Wulf ML (1958) Cytogeography of the Dichanthium annulatum complex. Brittonia 10:59–72CrossRefGoogle Scholar
  28. Chapman H, Houliston GJ, Robson B, Ilne I (2003) A case of reversal: the evolution and maintenance of sexuals from parthenogenetic clones in Hieracium pilosella. Int J Plant Sci 164:719–728CrossRefGoogle Scholar
  29. Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:4223–4228PubMedPubMedCentralCrossRefGoogle Scholar
  30. Conner JA, Gunawan G, Ozias-Akins P (2013) Recombination within the apospory specific genomic region leads to the uncoupling of apomixis components in Cenchrus ciliaris. Planta 238:51–63PubMedCrossRefGoogle Scholar
  31. Conner JA, Mookkan M, Huo H, Chae K, Ozias-Akins P (2015) A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc Natl Acad Sci USA 112(36):11205–11210Google Scholar
  32. Cosendai AC, Horandl E (2010) Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae). Ann Bot 105:457–470PubMedPubMedCentralCrossRefGoogle Scholar
  33. d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLOS Biol 7:e1000124. 16:1–128Google Scholar
  34. Darlington CD (1939) The evolution of genetic systems. Cambridge University Press, Cambridge, p 254Google Scholar
  35. Daurelio LD, Espinoza F, Quarin CL, Pessino SC (2004) Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry or allopatry. Plant Syst Evol 244:189–199CrossRefGoogle Scholar
  36. de Meeȗs T, Prugnolle F, Agnew P (2007) Asexual reproduction: genetics and evolutionary aspects. Cell Mol Life Sci 64:1355–1372PubMedCrossRefGoogle Scholar
  37. den Nijs JCM, Menken SBJ (1996) Relations between breeding system, ploidy level, and taxonomy in some advanced sections of Taraxacum. In: Hind DJN, Beentje HJ (eds) Compositae: systematics. Proceedings of the international compositae conference. Royal Botanic Gardens, Kew, pp 665–677Google Scholar
  38. de Wet JMJ, Harlan JR (1970a) Apomixis, polyploidy and speciation in Dichanthium. Evolution 24:270–277CrossRefGoogle Scholar
  39. de Wet JMJ (1968) Diploid-tetraploid-haploid cycles and the origin of variability in Dichanthium. Evolution 22:394–397CrossRefGoogle Scholar
  40. de Wet JMJ, Engle LM, Grant CA (1973) Breeding behaviour of maize-Tripsacum hybrids. Crop Sci 13:254–256CrossRefGoogle Scholar
  41. de Wet JMJ, Harlan JR (1966) Morphology of the compilospecies Bothriochloa intermedia. Amer J Bot 53:94–98CrossRefGoogle Scholar
  42. de Wet JMJ, Harlan JR (1970b) Bothriochloa intermedia—a taxonomic dilemma. Taxon 19:339–340CrossRefGoogle Scholar
  43. de Wet JMJ, Timothy DH, Hilu KW, Fletcher GB (1981) Systematics of South American Tripsacum (Gramineae). Am J Bot 68:269–276CrossRefGoogle Scholar
  44. Dudman AA, Richards AJ (1997) Dandelions of Great Britain and Ireland. Botanical Society of the British Isles, LondonGoogle Scholar
  45. Dujardin M, Hanna WW (1989) Developing apomictic pearl millet: characterization of a BC3 plant. J Genet Breed 43:145–151Google Scholar
  46. Ebina M, Nakagawa H, Yamamoto T, Araya H, Tsuruta S et al (2005) Co-segregation of AFLP and RAPD markers to apospory in Guineagrass (Panicum maximum Jacq.). Grassland Sci 51:71–78CrossRefGoogle Scholar
  47. Farquharson LI (1955) Apomixis and polyembryony in Tripsacum dactyloides. Am J Bot 42:737–743CrossRefGoogle Scholar
  48. Fehrer J, Gemeinholzer B, Chrtek J Jr, Bra¨utigam S (2007a) Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Mol Phylogenet Evol 42:347–361PubMedCrossRefGoogle Scholar
  49. Fehrer J, Krahulcová A, Krahulec F, Chrtek Jr J, Rosenbaumova´ R, Bräutigam S (2007b) Evolutionary aspects in Hieracium subgenus Pilosella. In: Hörandl E, Grosniklaus U, van Dijk P, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. Koeltzn, Königstein, pp 359–390Google Scholar
  50. Ford H, Richards AJ (1985) Isozyme variation within and between Taraxacum agamospecies in a single locality. Heridity 55:289–291CrossRefGoogle Scholar
  51. Grant V (1981) Plant speciation. Columbia University Press, New York, p 435Google Scholar
  52. Grimanelli D, Leblanc O, Espinosa E, Perotti E, Gonzales de Leon D, Savidan Y (1998) Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or several genes? Heredity 80:33–39PubMedCrossRefGoogle Scholar
  53. Grossniklaus U, Koltunow A, van Lookeren Campagne M (1998) A bright future for apomixis. Trends Plant Sci 3:415–441CrossRefGoogle Scholar
  54. Guitton E-A, Berger F (2005) Loss of function of MULTICOPY SUPPRESSOR OF IRA 1 produces nonviable parthenogenic embryos in Arabidopsis. Curr Biol 15:750–754PubMedCrossRefGoogle Scholar
  55. Guo M, Rupe MA, Zinselmeier C, Habben J, Bowen BA, Smith OS (2004) Allelic variation of gene expression in maize hybrids. Plant Cell 16:1707–1716PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hörandl E, Pan O (2007) Patterns and sources of genetic diversity in apomictic plants: implications for evolutionary potentials In: Hörandl E, Grossniklaus U, Van Dijk PJ, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. International Association for Plant Taxonomy, Ruggel, pp 169–194Google Scholar
  57. Hand ML, Koltunow AM (2014) The genetic control of apomixis: asexual seed formation. Genetics 197:441–450PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hand ML, Vı´t P, Krahulcová A, Johnson SD, Oelkers K, Siddons H, Chrtek J, Fehrer Jr. J, Koltunow AMG (2015) Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations. Hered 114:17–26Google Scholar
  59. Hanna WW, Burton GW (1986) Cytogenetics and breeding behavior of an apomictic triploid in bahiagrass. J Hered 77:457–459Google Scholar
  60. Hanna WW, Roche D, Ozias-Akins P (1998) Use of apomixis in crop improvement. In: Virmani SS, Siddiq ED, Muralidharan K (eds) Advances in hybrid rice technology. Proceedings of the 3rd international symposium on hybrid rice. International Rice Research Institute, Manila, pp 283–296Google Scholar
  61. Hao JH, Qiang S, Chrobock T, van Kleunen M, Liu QQ (2011) A test of Baker’s law: breeding systems of invasive species of Asteraceae in China. Biol Invasions 13:571–580CrossRefGoogle Scholar
  62. Hardesty BD, Le Roux JJ, Rocha OJ, Meyer JY, Westcott D, Wieczorek AM (2012) Getting here from there: testing the genetic paradigm underpinning introduction histories and invasion success. Divers Distrib 18:147–157CrossRefGoogle Scholar
  63. Harlan JR, de Wet JMJ (1963) The compilospecies concept. Evolution 17:497–501CrossRefGoogle Scholar
  64. Hörandl E, Dobes C, Lambrou M (1997) Chromosomen-und Pollenuntersuchungen an osterreichischen Arten des apomiktischen Ranunculus auricomus-Komplexes. Bot Helv 107:195–209Google Scholar
  65. Hörandl E, Greilhuber J (2002) Diploid and autotetraploid sexuals and their relationship to apomicts in the Ranunculus cassubicus group: insights from DNA content and isozyme variation. Plant Syst Evol 234:85–100CrossRefGoogle Scholar
  66. Hörandl E, Hojsgaard D (2012) The evolution of apomixis in angiosperms: a reappraisal. Plant Biosyst 146:681–693Google Scholar
  67. Hojsgaard D, Hörandl E (2015a) A little bit of sex matters for genome evolution in asexual plants. doi: 10.3389/fpls.2015.00082 Google Scholar
  68. Hojsgaard D, Hörandl E (2015b) Apomixis as a facilitator of range expansion and diversification in plants. In: From Genotype to phenotype. Springer International Publishing, Switzerland. doi: 10.1007/978-3-319-19932-0_16
  69. Hojsgaard D, Klatt S, Baier R, Carman JG, Hörandl E (2014a) Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Crit Rev Plant Sci 33:414–427PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hojsgaard DH, Greilhuber J, Pellino M, Paun O, Sharbel TF, Hörandl E (2014b) Emergence of apospory and by pass of meiosis via apomixis after sexual hybridization and polyploidization. New Phytol 204:1000–1012PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hörandl E (2009) A combinational theory for maintenance of sex. Heredity 103:445–457PubMedPubMedCentralCrossRefGoogle Scholar
  72. Jessup RW, Burson BL, Burow GB, Wang YW, Chang C, Li Z, Paterson AH, Hussey MA (2002) Disomic inheritance, suppressed recombination, and allelic interactions govern apospory in buffel grass as revealed by genome mapping. Crop Sci 42:1688–1694CrossRefGoogle Scholar
  73. Kantama L, Sharbel TF, Eric Schranz M, Mitchell-Olds T, De Vries S, De Jong H (2007) Diploid apomicts of the Boechera holboelli complex display large scale chromosome substitutions and aberrant chromosomes. Proc Natl Acad Sci USA 104:14026–14031PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kindiger B, Sokolov V, Dewald C (1996) A comparison of apomictic reproduction in eastern gamagrass (Tripsacum dactyloides L.) and maize-Tripsacum hybrids. Genetica 97:103–110CrossRefGoogle Scholar
  75. Koch MA, Dobeš C, Mitchell-Olds T (2003) Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Mol Biol Evol 20:338–350PubMedCrossRefGoogle Scholar
  76. Koltunow AM, Ozias-Akins P, Siddiqi I (2013) Apomixis. In: Becraft PW (ed) Seed genomics. Wiley, London, pp 83–110CrossRefGoogle Scholar
  77. Krahulcová A, Rotreklová O, Krahulec F, Rosenbaumová R, Plačková I (2009) Enriching ploidy level diversity: the role of apomictic and sexual biotypes of Hieracium subgen. Pilosella (Asteraceae) that coexist in polyploid populations. Folia Geobot 44:281–306Google Scholar
  78. Labombarda P, Busti A, Caceres ME, Pupilli F, Arcioni S (2002) An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex. Genome 45:513–519PubMedCrossRefGoogle Scholar
  79. Leblanc O, Grimanelli D, González-de-León D, Savidan Y (1995) Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers. Theor Appl Genet 90:1198–1203PubMedCrossRefGoogle Scholar
  80. Mangelsdorf PC, Reeves RG (1931) Hybridization of maize, Tripsacum and Euchlaena. J Hered 22:329–343Google Scholar
  81. Marimuthu MPA, Jolivet S, Ravi M, Pereira L, Davda JN et al (2011) Synthetic clonal reproduction through seeds. Science 331:876PubMedCrossRefGoogle Scholar
  82. Markwelch D, Meselson M (2000) Evidence for the evolution of Bdelloid rotifers without sexual reproduction or genetic exchange. Science 288:(5468)1211–1215Google Scholar
  83. Martinez EJ, Hopp HE, Stein J, Ortiz JPA, Quarin CL (2003) Genetic characterization of apospory in tetraploid Paspalum notatum based on the identification of linked molecular markers. Mol Breed 12:319–327CrossRefGoogle Scholar
  84. Martinez EJ, Urbani MH, Quarin CL, Ortiz JPA (2001) Inheritance of apospory in bahiagrass, Paspalum notatum. Hereditas 135:19–25PubMedCrossRefGoogle Scholar
  85. Mehra KL (1961) Chromosome number, geographical distribution and taxonomy of the Dichanthium annulatum complex. Cytologia 17:176Google Scholar
  86. Miles JW, Escandon ML (1997) Further evidence on the inheritance of reproductive mode in Brachiaria. Can J Plant Sci 77:105–107CrossRefGoogle Scholar
  87. Mitsuyuki MC, Hoya A, Shibaike H, Watanabe M, Yahara T (2014) Formation of a hybrid triploid agamosperm on a sexual diploid plant: evidence from progeny tests in Taraxacum platycarpum. Plant Syst Evol 300:863–870CrossRefGoogle Scholar
  88. Mogie M, Ford H (1988) Sexual and asexual Taraxacum species. Biol J Linnean Soc 35:155–168CrossRefGoogle Scholar
  89. Moreno-Perez E, Garcia-Velazquez A, Avendano-Arrazate CH (2009) Estudio citolo´gico en poblaciones diploides y poliploides del ge´nero Tripsacum. Interciencia 34:791–795Google Scholar
  90. Nakano M, Shimada T, Endo T, Fujii H, Nesumi H, Kita M, Ebina M, Shimizu T, Omura M (2012) Characterization of genomic sequence showing strong association with polyembryony among diverse Citrus species and cultivars, and its synteny with Vitis and Populus. Plant Sci 183:131–142PubMedCrossRefGoogle Scholar
  91. Naumova TN, Hayward MD, Wagenvoort M (1999) Apomixis and sexuality in diploid and tetraploid accessions of Brachiaria decumbens. Sex Plant Reprod 12:43–52CrossRefGoogle Scholar
  92. Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angisoperms. Springer, Berlin, pp 475–518CrossRefGoogle Scholar
  93. Norrmann GA, Quarín CL, Burson BL (1989) Cytogenetics and reproductive behavior of different chromosome races in six Paspalum species. J Heredity 80:24–28Google Scholar
  94. Noyes RD, Baker R, Mai B (2007) Mendelian segregation for two-factor apomixis in Erigeron annuus (Asteraceae). Heredity 98:92–98PubMedCrossRefGoogle Scholar
  95. Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155:379–390PubMedPubMedCentralGoogle Scholar
  96. Ogawa D, Johnson SD, Henderson ST, Koltunow AM (2013) Genetic separation of autonomous endosperm formation (AutE) from two other components of apomixis in Hieracium. Plant Reprod 26:113–123PubMedCrossRefGoogle Scholar
  97. Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL (1999) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:407–416PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ortiz JPA, Quarin CL, Pessino SC, Acuna CA, Martinez EJ, Espinoza F, Hojsgaard DH, Sartor ME, Caceres ME, Pupilli F (2013) Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. Ann Bot (Lond) 112:767–787CrossRefGoogle Scholar
  99. Otto SP, Whitton J (2000) Polyploidy incidence and evolution. Annu Rev Genet 34:401–437.PubMedCrossRefGoogle Scholar
  100. Ozias-Akins P, Lubbers EL, Hanna WW, Mc Nay JW (1993) Transmission of the apomictic mode of reproduction in Pennisetum: co-inheritance of the trait and molecular markers. Theor Appl Genet 85:632–638PubMedCrossRefGoogle Scholar
  101. Ozias-Akins P, van Dijk PJ (2007) Mendelian genetics of apomixis in plants. Annu Rev Genet 41:509–537PubMedCrossRefGoogle Scholar
  102. Ozias-Akins PE, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci USA 95:5127–5132PubMedPubMedCentralCrossRefGoogle Scholar
  103. Pellino M, Hojsgaard D, Schmutzer T, Scholz U, Hörandl E, Vogel H et al (2013) Asexual genome evolution in the apomictic Ranunculus auricomus complex: examining the effects of hybridization and mutation accumulation. Mol Ecol 22:5908–5921.PubMedCrossRefGoogle Scholar
  104. Pernès J (1975) Organization evolution d’un groupe agamique: la section des Maximae du genre. Panicum (Gramineae). ORSTOM, Paris, pp 1–106Google Scholar
  105. Pessino SC, Evans C, Ortiz JPA, Armstead I, do Valle CB, Hayward MD (1998) A genetic map of the apospory-region in Brachiaria hybrids: identification of two markers closely associated with the trait. Hereditas 128:153–158CrossRefGoogle Scholar
  106. Pessino SC, Ortiz J, Leblanc O, do Valle CB, Hayward MD (1997) Identification of a maize linkage group related to apomixis in Brachiaria. Theor Appl Genet 94:439–444CrossRefGoogle Scholar
  107. Peters HA (2001) Clidemia hirta invasion at the Pasoh Forest Reserve: an unexpected plant invasion in an undisturbed tropical forest. Biotropica 33:60–68CrossRefGoogle Scholar
  108. Petrov DF, Belousov NI, Fokina ES, Laikova LI, Yatsenko RM, Sorokina TP (1984) Transfer of some elements of apomixis from Tripsacum to maize. In: Petrov DF (ed) Apomixis and its role in evolution and breeding. Oxonian Press, New Delhi, pp 9–7Google Scholar
  109. Petrov DF, Belousova NI, Fokina ES (1979) Inheritance of apomixis and its elements in maize-Tripsacum hybrids. Genetika 15:1827–1836Google Scholar
  110. Porceddu A, Albertini E, Barcaccia G, Falistocco E, Falcinelli M (2002) Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudotestcross strategy based on AFLP and SAMPL markers. Theor Appl Genet 104:273–280PubMedCrossRefGoogle Scholar
  111. Pupilli F, Labombarda P, Caceres ME, Quarin CL, Arcioni S (2001) The chromosome segment related to apomixis in Paspalum simplex is homoeologous to the telomeric region of the long arm of rice chromosome 12. Mol Breed 8:53–61CrossRefGoogle Scholar
  112. Pupilli F, Martinez EJ, Busti A, Calderini O, Quarin CL, Arcioni S (2004) Comparative mapping reveals partial conservation of synteny at the apomixis locus in Paspalum spp. Mol Genet Genom 270:539–548CrossRefGoogle Scholar
  113. Quarin CL (1992) The nature of apomixis and its origin in Panicoid grasses. Apomixis News 5:8–15Google Scholar
  114. Quattrocchi U (2008) CRC World dictionary of grasses: common names, scientific names, eponyms, synonyms and etymology. Taylor and Francis Group, Boca Raton, pp 632–637Google Scholar
  115. Randolph LF (1970) Variation among Tripsacum populations of Mexico and Guatemala. Brittonia 22:305–337CrossRefGoogle Scholar
  116. Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618PubMedCrossRefGoogle Scholar
  117. Ravi M, Marimuthu MPA, Siddiqi I (2008) Gamete formation without meiosis in Arabidopsis. Nature 451:1121–1124PubMedCrossRefGoogle Scholar
  118. Richards AJ (1973) The origin of Taraxacum agamospecies. Bot J Linn Soc 66:189–211CrossRefGoogle Scholar
  119. Richards AJ (1986) Plant breeding systems. Allen & Unwin, LondonGoogle Scholar
  120. Roche D, Chen Z, Hanna W, Ozias-Akins P (2001) Non-Mendelian transmission of an apospory-specific genomic region in a reciprocal cross between sexual pearl millet (Pennisetum glaucum) and an apomictic F1 (P. glaucum x P. squamulatum). Sex Plant Reprod 13:217–223CrossRefGoogle Scholar
  121. Roche D, Cong P, Chen ZB, Hanna WW, Gustine DL et al (1999) An apospory-specific genomic region is conserved between buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen. Plant J 19:203–208PubMedCrossRefGoogle Scholar
  122. Roiloa SR, Antelo B, Retuerto R (2014) Physiological integration modifies d15 N in the clonal plant Fragaria vesca, suggesting preferential transport of nitrogen to water-stressed offspring. Ann Bot 114:399–411PubMedPubMedCentralCrossRefGoogle Scholar
  123. Savidan Y (1980) Chromosomal and embryological analyses in sexual X apomictic hybrids of Panicum maximum Jacq. Theor Appl Genet 57:153–156CrossRefGoogle Scholar
  124. Savidan Y (1982) Nature et hérédité de l´apomixie chez Panicum maximum Jacq. ORSTOM Travaux et Documentos, 153. ORSTOM, ParisGoogle Scholar
  125. Savidan Y (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–86Google Scholar
  126. Savidan Y, Pernès J (1982) Diploid-tetraploid-dihaploid cycles and the evolution of Panicum maximum Jacq. Evolution 36:596–600CrossRefGoogle Scholar
  127. Schallau A, Arzenton F, Johnston AJ, Hähnel U, Koszegi D et al (2010) Identification and genetic analysis of the APOSPORY locus in Hypericum perforatum L. Plant J 62:773–784PubMedCrossRefGoogle Scholar
  128. Schranz ME, Dobes C, Koch MA, Mitchell-Olds T (2005) Sexual reproduction, hybridization, apomixis, and polyploidization in the genus Boechera (Brassicaceae). Am J Bot 92:1797–1810PubMedCrossRefGoogle Scholar
  129. Sherwood RT, Berg CC, Young BA (1994) Inheritance of apospory in buffelgrass. Crop Sci 34:149–1494CrossRefGoogle Scholar
  130. Skawin´ska R (1963) Apomixis in Hieracium alpinum L. Acta Biol Cracov 5:7–14Google Scholar
  131. Smith J (1841) Notice of a plant which produces perfect seeds without any apparent action of pollen. Trans Linnean Soc London 18:509–512CrossRefGoogle Scholar
  132. Sochor M, Vašut RJ, Sharbel TF, Trávnícěk B (2015) How just a few makes a lot: Speciation via reticulation and apomixis on example of European brambles (Rubus subgen. Rubus, Rosaceae) Mol Phyl Evol 89:13–27Google Scholar
  133. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York, p 643Google Scholar
  134. Stein J, Quarin CL, Martinez EJ, Pessino SC, Ortiz JPA (2004) Tetraploid races of Paspalum notatum show polysomic inheritance and preferential chromosome pairing around the apospory-controlling locus. Theor Appl Genet 109:186–191PubMedCrossRefGoogle Scholar
  135. Talent N, Dickinson TA (2005) Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae): evolutionary inferences from flow cytometry of nuclear DNA amounts. Can J Bot 83:1268–1304CrossRefGoogle Scholar
  136. Tucker MR, Araujo ACG, Paech NA, Hecht V, Schmidt EDL et al (2003) Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways. Plant Cell 15:1524–1537PubMedPubMedCentralCrossRefGoogle Scholar
  137. Urbani MH, Quarin CL, Espinoza F, Penteado MIO, Rodrigues IF (2002) Cytogeography and reproduction of the Paspalum simplex polyploid complex. Plant Syst Evol 236:99–105CrossRefGoogle Scholar
  138. Valle CB, Glenke C (1993) Towards defining the inheritance of apomixis in Brachiaria. Apomixis Newslett 6:24–25Google Scholar
  139. Van Dijk PJ (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos Trans R Soc London Ser B 358:1113–1121CrossRefGoogle Scholar
  140. Van Dijk PJ, Bakx-Schotman JMT (2004) Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum) is controlled by a sex-specific dominant gene. Genetics 166:483–492PubMedPubMedCentralCrossRefGoogle Scholar
  141. Van Dijk PJ, Vijverberg K (2005) The significance of apomixis in the evolution of the angiosperms: a reappraisal. In: Bakker F, Chatrou L, Gravendeel B, Pelser PB (eds) Plant species-level systematics: new perspectives on pattern and process (Gantner, Ruggell, Liechtenstein), pp 101–116Google Scholar
  142. Van Oostrum H, Sterk AA, Wijsman HJW (1985) Genetic variation in agamospermous microspecies of Taraxacum sect. Erythrosperma and sect. Obliqua. Heredity 55:223–228CrossRefGoogle Scholar
  143. Vijverberg K, Van der Hulst RGM, Lindhout P, Van Dijk PJ (2004) A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae). Theor Appl Genet 108:725–732PubMedCrossRefGoogle Scholar
  144. Whitton J, Sears CJ, Bacck EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. Int J Plant Sci 169:169–182CrossRefGoogle Scholar
  145. Winkler H (1908) Über Parthenogenesis und Apogamie im Pflanzenreiche. Progr Rei Bot 2:293–454Google Scholar
  146. Yadav CB, Anuj, Kumar S, Gupta MG, Bhat V (2012) Genetic linkage maps of the chromosomal regions associated with apomictic and sexual modes of reproduction in Cenchrus ciliaris. Mol Breed 30(1):239–250CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of BotanyUniversity of DelhiDelhiIndia

Personalised recommendations