Skip to main content

Introgression and Exploitation of Biotic Stress Tolerance from Related Wild Species in Wheat Cultivars

  • Chapter
  • First Online:

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 11))

Abstract

Bread wheat is one of the three most important cereal crops which has major role in feeding the population globally. Biotic stresses, mainly the fungal diseases, pose major constraint to wheat production. To combat against these diseases, continuous efforts have been made to mine genes from wide variety of sources including primary, secondary, and tertiary gene pools of cultivated wheat which are rich sources of genes against different biotic stresses. More than 100 resistance genes against leaf rust, stripe rust, stem rust, and powdery mildew have been identified from these gene pools and successfully transferred to cultivated wheat. The transfers from primary gene pool are achieved through homologous pairing while transfer from secondary and territory gene pool requires special chromosome engineering techniques for affecting transfers through induced homoeologous pairing or translocations. The introgressions have been reported as small cryptic alien segments or complete chromosome arms or chromosomes such as chromosome addition and substitution lines. Molecular cytogenetic techniques such as genomic in situ hybridization (GISH) have proved to be a highly efficient technique to directly and precisely detect the alien segments in wheat while molecular marker technologies now combined with next-generation sequencing techniques have facilitated the mapping as well as marker-based mobilization of alien genes to cultivated wheat background. Present review gives a brief description of the contributions of different gene pools of wheat toward the biotic stress resistance, methodologies of gene transfer, characterization of these transfers, and use of the molecular marker technologies for precisely mapping the alien genes for resistance to various biotic stresses in wheat.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aghaee-Sarbarzeh M, Singh H, Dhaliwal HS (2000) Ph1 gene derived from Ae. speltoides induces homoeologous pairing in wide crosses of Triticum aestivum. J Heredity 91:417–421

    Article  Google Scholar 

  • Aghaee-Sarbarzeh M, Dhaliwal HS, Chhuneja P, Singh H (2001) Suppression of rust resistance genes from distantly related species in Triticum durum-Aegilops amphiploids. Wheat Inf Serv 92:12–16

    Google Scholar 

  • Alam A, Xue F, Wang C, Wanquan J (2011) Powdery mildew resistance genes in wheat: identification and genetic analysis. J Mol Biol Res 1:21–38

    Article  Google Scholar 

  • Anikster Y, Manisterski J, Long DL, Leonard KJ (2005) Resistance to leaf rust, stripe rust and stem rust in Aegilops spp. in Israel. Plant Dis 89:303–308

    Article  Google Scholar 

  • Anker CC, Niks RE (2001) Prehaustorial resistance to wheat leaf rust in Triticum monococcum (s.s.). Euphytica 117:209–215

    Article  Google Scholar 

  • Anker CC, Buntjer JB, Niks RE (2001) Morphological and molecular characterisation confirm that Triticum monococcum s.s. is resistant to wheat leaf rust. Theor Appl Genet 103:1093–1098

    Article  Google Scholar 

  • Anugrahwati DR, Shepherd KW, Verlin DC, Zhang P, Mirzaghaderi G, Walker E, Francki MG, Dundas IS (2008) Isolation of wheat rye 1RS recombinants that break the linkage between the stem rust resistance gene SrR and secalin. Genome 51:341–349

    Article  CAS  PubMed  Google Scholar 

  • Assefa S, Fehrmann H (2004) Evaluation of Aegilops tauschii Coss. for resistance to wheat stem rust and inheritance of resistance genes in hexaploid wheat. Genet Resour Crop Evol 51:663–669

    Article  CAS  Google Scholar 

  • Autrique E, Singh RP, Tanksley SD, Sorrells ME (1995) Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome 38:75–83

    Article  CAS  PubMed  Google Scholar 

  • Bai D, Knott DR, Zale JM (1998) The inheritance of leaf and stem rust resistance in Triticum monococcum L. Can J Plant Sci 78:223–226

    Article  Google Scholar 

  • Bansal M, Kaur S, Dhaliwal H, Chhuneja P, Bariana H, Bansal U (2015) Introgression of linked rust resistance genes Lr76 and Yr70 from Aegilops umbellulata to wheat chromosome 5DS. (under review)

    Google Scholar 

  • Bartos P, Bares I (1971) Leaf and stem rust resistance of hexaploid wheat cultivars ‘Salzmunder Bartweizen’ and ‘Weique’. Euphytica 20:435–440

    Article  Google Scholar 

  • Bartos P, Valkoun J, Kosner J, Slovencikova V (1973) Rust resistance of some European wheat cultivars derived from rye. In: Sears ER, Sears LM (eds) Proceedings of 4th international wheat genet symposium. University of Missouri, Columbia, USA, pp 145–46

    Google Scholar 

  • Bennett FGA (1984) Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol 33:279–300

    Article  Google Scholar 

  • Blanco A, Gadaleta Cenci AA, Carluccio AV, Abdelbacki AMM, Simeone R (2008) Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet 116:417–425

    Article  CAS  Google Scholar 

  • Bouhssini ME, Benlhabib O, Bentika A, Sharma HC, Lahloui S (1997) Sources of resistance in Triticum and Aegilops species to Hessian fly (Diptera: Cecidomyiidae) in Morocco. Arab J Plant Prot 15:126–128

    Google Scholar 

  • Brown SM, Szewc-McFadden AK, Kresovich S (1996) Development and application of simple sequence repeat (SSR) loci for plant genome analysis. In: Jauhar PP (ed) Methods of genome analysis in plants. CRC Press Inc, Florida, pp 147–162

    Google Scholar 

  • Brown-Guerdira GL, Singh S, Fritz AK (2003) Performance and mapping of leaf rust resistance to wheat from Triticum timopheevii subsp. armeniacum. Phytopathology 93:784–789

    Article  Google Scholar 

  • Caldwell RM (1968) Breeding for general and/or specific plant disease resistance. In: Finley KW, Shepherd KW (eds) 3rd International wheat genetics symposium. Canberra, Australia, pp 263–272

    Google Scholar 

  • Cenci A, D’Ovidio R, Tanzarella OA, Ceoloni C, Porceddu E (1999) Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet 98:448–454

    Article  CAS  Google Scholar 

  • Ceoloni C, Del Signore G, Ercoli L, Donini P (1992) Locating the alien chromatin segment in wheat–Aegilops longissima mildew resistant transfers. Hereditas 116:239–245

    Article  Google Scholar 

  • Chen PD, Tsujimoto H, Gill BS (1994) Transfer of Ph I genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet 88:97–101

    CAS  PubMed  Google Scholar 

  • Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ (1995) Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91:1125–1129

    CAS  PubMed  Google Scholar 

  • Chen XM, Luo YH, Xia XC, Xia LQ, Chen X, Ren ZL, He ZH, Jia JZ (2005) Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed 124:225–228

    Article  CAS  Google Scholar 

  • Chen S, Rouse MN, Zhang W, Jin Y, Akhunov E, Wei Y, Dubcovsky J (2015) Fine mapping and characterization of Sr 21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group. Theor Appl Genet 128:645–656

    Article  CAS  PubMed  Google Scholar 

  • Cherukuri DP, Gupta PK, Charpe A, Koul S, Prabhu KV, Singh RB, Haq QMR (2005) Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr 28 in wheat. Euphytica 143:19–26

    Article  CAS  Google Scholar 

  • Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Prashar M, Bains NS, Goel RK, Keller B, Dhaliwal HS, Singh K (2008a) Mapping of adult plant stripe rust resistance genes in diploid a genome wheat species and their transfer to bread wheat. Theor Appl Genet 116:313–324

    Article  CAS  PubMed  Google Scholar 

  • Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Prashar M, Dhaliwal HS (2008b) Transfer of leaf rust and stripe rust resistance from Aegilops umbellulata Zhuk. to bread wheat (Triticum aestivum L.). Genet Resour Crop Evol 55:849–859

    Article  Google Scholar 

  • Chhuneja P, Kaur S, Singh K, Dhaliwal HS (2008c) Evaluation of Aegilops tauschii (L.) germplasm for Karnal bunt resistance in a screen house with simulated environmental conditions. Plant Genet Resour Charact Util 6:79–84

    Article  Google Scholar 

  • Chhuneja P, Garg T, Kumar R, Kaur S, Sharma A, Bains NS, Ahuja M, Dhaliwal HS, Singh K (2010) Evaluation of Aegilops tauschii Coss. germplasm for agromorphological traits and genetic diversity using SSR loci. Indian J Genet 70:328–338

    Google Scholar 

  • Chhuneja P, Kumar K, Stirnweis D, Hurni S, Keller B, Dhaliwal HS, Singh K (2012) Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L. Theor Appl Genet 124:1051–1058

    Article  CAS  PubMed  Google Scholar 

  • Chhuneja P, Yadav B, Stirnweis D, Hurni S, Kaur S, Elkot AF, Keller B, Wicker T, Sehgal S, Gill BS, Singh K (2015) Fine mapping of powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 in Triticum boeoticum (Boiss.) using the shotgun sequence assembly of chromosome 7AL. Theor Appl Genet. doi:10.1007/s00122-015-2570-5

    Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox TS (1998) Deepening the wheat gene pool. J Crop Prod 1:1–25

    Article  Google Scholar 

  • Cox TS, Hatchett JH (1994) Hessian fly resistance gene H26 transferred from Triticum tauschii to common wheat. Crop Sci 34:958–960

    Article  Google Scholar 

  • Cox TS, Raupp WJ, Gill BS (1994) Leaf rust-resistance genes Lr 41, Lr 42 and Lr 43 transferred from Triticum tauschii to common wheat. Crop Sci 34:339–343

    Article  Google Scholar 

  • Dadkhodaie NA, Karaoglou H, Wellings CR, Park RF (2011) Mapping genes Lr 53 and Yr 35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr 36. Theor Appl Genet 122:479–487

    Article  CAS  PubMed  Google Scholar 

  • Das MK, Rajaram S, Mundt CC, Kronstad WE (1992) Inheritance of slow-rusting resistance to leaf rust in wheat. Crop Sci 32:1452–1456

    Article  Google Scholar 

  • Dedryver F, Jubier MF, Thouvenin J, Goyeau H (1996) Molecular markers linked to the leaf rust resistance gene Lr 24 in different wheat cultivars. Genome 39:830–835

    Article  CAS  PubMed  Google Scholar 

  • Delibes A, Romero D, Aguaded S, Duce A, Mena M, Lopez-Brana I, Andres MF, MartinSanchez JA, Garcia-Olmedo F (1993) Resistance to the cereal cyst nematode (Heterodera avenae Woll.) transferred from the wild grass Aegilops ventricosa to hexaploid wheat by a “stepping-stone” procedure. Theor Appl Genet 87:402–408

    Article  CAS  PubMed  Google Scholar 

  • Dhaliwal HS, Singh H (1997) Breeding for resistance to bunts and smuts: Indian scenario. In: Proceedings bunts and smuts of wheat: an international symposium. North Carolina, North American Plant Protection Organization, Ottawa, pp 327–347

    Google Scholar 

  • Dhaliwal HS, Singh H, Singh KS, Randhawa HS (1993) Evaluation and cataloguing of wheat germplasm for disease resistance and quality. In: Damania AB (ed) Biodiversity and wheat improvement. Wiley, London, pp 123–140

    Google Scholar 

  • Dhaliwal HS, Singh Harjit, William M (2002) Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterization of resistant derivatives. Euphytica 126:153–159

    Article  CAS  Google Scholar 

  • Dhaliwal HS, Chhuneja P, Gill RK, Goel RK, Singh H (2003) Introgression of disease resistance genes from related species into cultivated wheats through interspecific hybridization. Crop Improv 29:1–18

    Google Scholar 

  • Diaz-Salazar J, Orellana J (1995) Aegilops searsii species specific DNA and chromosome markers. Chromosome Res 3:99

    Google Scholar 

  • Doležel J, Vrána J, Šafár J, Bartoš J, Kubaláková M, Šimková H (2012) Chromosomes in the flow to simplify genome analysis. Funct Integr Genomics 12:397–416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan X, Sheng B, Zhou Y, Xiang Q (1998) Monitoring of the virulence population of Erysiphe graminis f. sp. tritici. Acta Phytophylac Sin 25:31–36

    Google Scholar 

  • Dubcovsky J, Luo MC, Dvorak J (1995) Differentiation between homoeologous chromosomes 1A of wheat and lAm of Triticum monococcum and its recognition by the wheat Ph l locus. Proc Natl Acad Sci USA 92:6645–6649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak J (1977) Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum. Can J Genet Cytol 19:133–141

    Article  Google Scholar 

  • Dvorak J, di Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: Identification of the A genome donor species. Genome 36:21–31

    Article  CAS  PubMed  Google Scholar 

  • Dvorak J, Luo M-C, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii gene pool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Dyck PL, Sykes EE (1994) Genetics of leaf-rust resistance in three spelt wheats. Can J Plant Sci 74:231–233

    Article  Google Scholar 

  • Elkot AFA, Chhuneja P, Kaur S, Saluja M, Keller B, Singh K (2015) Marker assisted transfer of two powdery mildew resistance genes PmTb7A.1 and PmTb7A. from Triticum boeoticum (Boiss.) to Triticum aestivum (L.). PLoS One 10:e0128297. doi:10.1371/journal.pone.0128297

    Article  PubMed  PubMed Central  Google Scholar 

  • Faris JD, Xu SS, Cai X, Friesen TL, Jin Y (2008) Molecular and cytogenetic characterization of a durum wheat–Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosome Res 16:1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:98–109

    Article  Google Scholar 

  • Feng J, Zuo LL, Zhang ZY, Lin RM, Cao YY, Xu SC (2011) Quantitative trait loci for temperature-sensitive resistance to Puccinia striiformis f. sp. tritici in wheat cultivar Flinor. Euphytica 178:321–329

    Article  Google Scholar 

  • Feuillet C, Messmer M, Schachermayr G, Keller B (1995) Genetic and physical characterisation of the Lr 1 leaf rust resistance locus in wheat (Triticum aestivum L.). Mol Gen Genet 248:553–562

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Mukai Y, Dhaliwal HS, Martin TJ, Gill BS (1991) Identification of alien chromatin specifying resistance to wheat streak mosaic virus and greenbug in wheat germplasm by C-banding and in situ hybridization. Theor Appl Genet 81:381–389

    Google Scholar 

  • Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS (1994) Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci 34:621–625

    Article  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Friebe B, Wilson DL, Raupp WJ, Gill BS, Brown-Guedira GL (2005) Notice of release of KS04WGRC45 leaf rust resistant hard winter wheat germplasm. Annu Wheat Newsl 51:188–189

    Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A Kinase-START gene confers temperature-dependent resistance to wheat stripe sust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes-Davila G, Rajaram S, Singh G (1995) Inheritance of resistance to Karnal bunt (Tilletia indica Mitra) in bread wheat (Triticum aestivum L.). Plant Breed 114:250–252

    Article  Google Scholar 

  • Gall J, Pardue M (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA 63:378–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerechter-Amitai AK, Wahl I, Vardi A, Zohary D (1971) Transfer of stem rust seedling resistance from wild diploid einkorn to tetraploid durum wheat by means of a triploid hybrid bridge. Eriplzyticu 20:281–285

    Google Scholar 

  • Gerechter-Amitai ZK, Grama A (1974) Inheritance of resistance to stripe rust (Puccinia striiformis) in crosses between wild emmer (Triticum dicoccoides) and cultivated tetraploid and hexaploid wheats, I. Triticum durum. Euphytica 23:387–392

    Article  Google Scholar 

  • German SE, Kolmer JA (1992) Effect of Lr34 in the enhancement of resistance to leaf rust of wheat. Theor Appl Genet 84:97–105

    Article  CAS  PubMed  Google Scholar 

  • Gill BS, Raupp WJ (1987) Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci 27:445–450

    Article  Google Scholar 

  • Gill BS, Sharma HC, Raupp WJ, Browder LE, Hatchett JH, Harvey TL, Moseman GJ, Waines JG (1985) Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly and greenbug. Plant Dis 69:314–316

    Google Scholar 

  • Gill BS, Raupp WI, Sharma HC, Browder LE, Hatchett JH, Harvey TL, Moseman JG, Waines JG (1986) Resistance in Aegilops tauschii to wheat leaf rust, wheat powdery mildew, greenbug, and Hessian fly. Plant Dis 70:550–556

    Article  Google Scholar 

  • Gill BS, Hatchett JH, Raupp WJ (1987) Chromosomal mapping of Hessian fly resistance gene H13 in the D genome of wheat. J Heredity 78:97–100

    Google Scholar 

  • Gill KS, Lubbers EL, Gill BS, Raupp WJ, Cox TS (1991) A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome 34:362–374

    Article  Google Scholar 

  • Gill BS, Huang L, Kuraparthy V, Raupp WJ, Wilson DL, Friebe B (2008) Alien genetic resources for wheat leaf rust resistance, cytogenetic transfer, and molecular analysis. Aus J Agric Res 59:197–208

    Article  CAS  Google Scholar 

  • Gold J, Hardner D, Towley-Smith F, Aung T and Procunier J (1999) Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. Electron J Biotechnol 2. http://www.ejbiotechnology.info/content/vol2/issue1/full/1/

  • Gold J, Harder D, Townley-smith F, Aung T, Procunier JD (2002) Development of molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. Electron J Biotechnol 2:35–40

    Google Scholar 

  • Guo Q, Zhang ZJ, Xu YB, Li GH, Feng J, Zhou Y (2008) Quantitative trait loci for high temperature adult-plant and slow-rusting resistance to Puccinia striiformis f. sp. tritici in wheat cultivars. Phytopathology 98:803–809

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Charpe A, Prabhu KV, Haque QMR (2006) Identification and validation of molecular markers linked to the leaf rust resistance gene Lr 19 in wheat. Theor Appl Genet 113:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Hao YF, Chen ZB, Wang YY, Bland D, Buck J, Brown-Guedira G, Johnson J (2011) Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. Theor Appl Genet 123:1301–1411

    Article  Google Scholar 

  • Harjit-Singh Tsujimoto H, Sakhuja PK, Singh T, Dhaliwal HS (2000) Transfer of resistance to wheat pathogens from Aegilops triuncialis to bread wheat. Wheat Inf Serv 91:5–10

    Google Scholar 

  • Hartl L, Weiss H, Stephan U, Zeller FJ, Jahoor A (1995) Molecular identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). Theor Appl Genet 90:601–606

    Article  PubMed  Google Scholar 

  • He R, Chang Z, Yang Z, Yuan Z, Zhan H, Zhang X, Liu J (2009) Inheritance and mapping of powdery mildew resistance gene Pm 43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Helguera M, Khan IA, Dubcovsky J (2000) Development of PCR markers for wheat leaf rust resistance gene Lr 47. Theor Appl Genet 100(7):1137–1143

    Article  CAS  Google Scholar 

  • Helguera M, Khan IA, Kolmer J, Lijavetzki D, Zhong-qi L, Dubcovsky J (2003) PCR assays for the Lr 37-Yr 17-Sr 38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43(5):1839–1847

    Article  CAS  Google Scholar 

  • Helguera M, Vanzetti L, Soria M, Khan IA, Kolmer J, Dubcovsky J (2005) PCR markers for Triticum speltoides leaf rust resistance gene Lr 51 and their use to develop isogenic hard red spring wheat lines. Crop Sci 45:728–734

    Article  CAS  Google Scholar 

  • Herrera-Foessel SA, lagudah ES, Huerta-Espino J, Hayden M, Bariana HS, Singh D, Singh RP (2011) New slow rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 are pleiotropic or closely linked. Theor Appl Genet 122:239–249

    Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, William HM, Garcia V, Djurle A, Yuen J (2008) Identification and characterization of leaf rust resistance gene Lr14a in durum wheat. Plant Dis 92:469–473

    Google Scholar 

  • Herrera-Foessel SA, Singh RP, Lillemo M, Huerta-Espino J, Bhavani S, Singh S, Lan C, Calvo-Salazar V, Lagudah ES (2014) Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theor Appl Genet 127:781–789

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Leitch AR, Schwarzacher T, Anamthawat- Jonsson K (1990) Detection and characterization of 1B/1R translocations in hexaploid wheat. Heredity 65:385–392

    Article  Google Scholar 

  • Heun M, Friebe B, Bushuk W (1990) Chromosomal location of the powdery mildew resistance gene of Amigo wheat. Phytopathology 80:1129–1133

    Article  Google Scholar 

  • Heun M, Scha fer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314

    Article  CAS  Google Scholar 

  • Hiebert CW, Thomas JB, Somers DJ, McCallum BD, Fox SL (2007) Microsatellite mapping of adult plant leaf rust resistance gene in Lr 22 in wheat. Theor Appl Genet 115:877–884

    Article  CAS  PubMed  Google Scholar 

  • Hiebert CW, Thomas JB, McCallum BD, Humphreys DG, DePauw RM, Hayden MJ, Mago R, Schnippenkoetter W, Spielmeyer W (2010) An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust ( Lr67 ). Theor Appl Genet 121:1083–1091

    Article  PubMed  Google Scholar 

  • Hsam SLK, Zeller FJ (2002) Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.). In: Belanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews, a comprehensive treatise. APS Press, St. Paul, pp 219–238

    Google Scholar 

  • Hsam SLK, Huang XQ, Ernst F, Hartl L, Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 5. Alleles at the Pm 1 locus. Theor Appl Genet 96:1129–1134

    Article  CAS  Google Scholar 

  • Hsam SLK, Huang XQ, Zeller (2001) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.) 6. Alleles at the Pm5 locus. Theor Appl Genet 102:127–133

    Article  CAS  Google Scholar 

  • Hsam SLK, Lapochkina IF, Zeller FJ (2003) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat Aegilops speltoides translocation line. Euphytica 133:367–370

    Article  Google Scholar 

  • Hu WG, Wang YJ, Wang CY, Ji WQ (2007) Genetic analysis on the powdery mildew resistance of Shanxi wheat landraces. J Triticeae Crops 27:341–344

    CAS  Google Scholar 

  • Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X, Sun Q, Liu Z (2009) Identification and genetic mapping of Pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119:223–230

    Article  CAS  PubMed  Google Scholar 

  • Huang L (1998) Molecular markers linked to the leaf rust resistance genes Lr 39 and Lr 40 of wheat introgressed from Aegilops tauschii. Kansas State University, kansas, pp 178

    Google Scholar 

  • Huang L, Gill BS (2001) An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor Appl Genet 103:1007–1013

    Article  CAS  Google Scholar 

  • Huang XQ, Roder MS (2004) Molecular mapping of powdery mildew resistance in wheat: a review. Euphytica 137:203–223

    Article  CAS  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-Based cloning of leaf rust resistance gene Lr 21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Zhang LQ, Liu BL, Yan ZH, Zhang B, Zhang YL, Liu DC (2011) Molecular tagging of a stripe rust resistance gene in Aegilops tauschii. Euphytica 179:313–318

    Article  CAS  Google Scholar 

  • Hussien T, Bowden RL, Gill BS, Cox TS, Marshall DS (1997) Performance of four new leaf rust resistance genes transferred to common wheat from Aegilops tauschii and Triticum monococcum. Plant Dis 81:582–586

    Article  Google Scholar 

  • IWGSC (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788-1–1251788-11

    Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29(4):e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakaska V (1995) Isoenzymes in the evaluation of germplasm diversity in wild diploid relatives of cultivated wheat. In: Damania AB (ed) Biodiversity and wheat improvement. ICARDA, Wiley-Sayce Publication, London, pp 247–257

    Google Scholar 

  • Jarve K, Peusha HO, Tsymbalova J, Tamm S, Devos KM, Enno TM (2000) Chromosomal location of a Triticum timopheevii—derived powdery mildew resistance gene transferred to common wheat. Genome 43:377–381

    Article  CAS  PubMed  Google Scholar 

  • Jeger MJ, Viljanen-Rollinson SLH (2001) The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theor Appl Genet 102:32–40

    Article  Google Scholar 

  • Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Zhao S, Kong X, Li Y, Zhao G et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 495:91–95

    Article  CAS  Google Scholar 

  • Jiang J, Gill BS (1994) Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploid wheats. Chr Res 2:59–64

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  Google Scholar 

  • John H, Birnstiel M, Jones K (1969) RNA-DNA hybrids at the cytological level. Nat (Lond) 223:582–587

    Article  CAS  Google Scholar 

  • Johnson R (1988) Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, DF, Mexico, pp 63–75

    Google Scholar 

  • Johnson BL, Dhaliwal HS (1976) Reproductive isolation of Triticum boeoticum and Triticum urartu and the origin of the tetraploid wheats. Am J Bot 63:1088–1094

    Article  Google Scholar 

  • Jørgensen JH (1973) Gene Pm6 for resistance to powdery mildew in wheat. Euphytica 22:43

    Google Scholar 

  • Kaur P (2014) Molecular characterization of wheat-Ae. caudata introgression (s) carrying leaf and stripe rust resistance gene (s) using wheat genome sequence data. Punjab Agricultural University Thesis

    Google Scholar 

  • Kerber ER (1987) Resistance to leaf rust in hexaploid wheat, Lr 32, a third gene derived from Triticum tauschii. Crop Sci 27:204–206

    Article  Google Scholar 

  • Kerber ER, Aung T (1999) Leaf rust resistance gene Lr 34 associated with non suppression of stem rust resistance in the wheat cultivar Canthatch. Phytopathology 89:518–521

    Article  CAS  PubMed  Google Scholar 

  • Kerber ER, Dyck PL (1969) Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 11:639–647

    Article  Google Scholar 

  • Kerber ER, Dyck PL (1990) Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides x Triticum monococcum. Genome 33:530–537

    Article  CAS  Google Scholar 

  • Khan RR, Bariana HS, Dholakia BB, Naik SV, Lagu MD, Rathjen AJ, Bhavani S, Gupta VS (2005) Molecular mapping of stem and leaf rust resistance in wheat. Theor Appl Genet 111:846–850

    Article  CAS  PubMed  Google Scholar 

  • Kihara H (1919) Ueber cytologische Studien bei einigen Getreidearten. 1. Spezies-Bastarde des Weizens und Weizenroggen-Bastard. Bot Mag 32:17–38

    Article  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare (Japanese). Agric Hortic 19:13–14

    Google Scholar 

  • Kihara H, Tanaka M (1958) Morphological and physiological variation among Aegilops squarrosa strains collected in Pakistan, Afganistan and Iran. Preslia. 30:241–251

    Google Scholar 

  • Kihara H, Yamashita K, Tanaka M (1965) Morphological, physiological, geographical and cytological studies in Aegilops and Triticum collected in Pakistan, Afghanistan and Iran. In: Yamashita K (ed) Cultivated plants and their relatives. Koei Printing, Japan, pp 1–118

    Google Scholar 

  • Knaggs P, Ambrose MJ, Reader SM, Miller TE (2000) Morphological characterization and evaluation of the subdivision of Aegilops tauschii Coss. Wheat Inf Serv 91:15–19

    Google Scholar 

  • Knight E, Greer E, Draeger T, Thole V, Reader S, Shaw P, Moore G (2010) Inducing chromosome pairing through premature condensation: Analysis of wheat interspecific hybrids. Funct Integr Genomics 10:603–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knott DR (1962) The inheritance of rust resistance:IX. The inheritance of resistance to races 15B and 56 of stem rust in the wheat variety Khapstein. Canm J Plant Sci 42:415–419

    Google Scholar 

  • Kolmer J (2008) Lr 63, Lr 64. In: McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (eds) Catalogue of gene symbols for wheat: 2009 supplement, p 271 (Reference 10550, p 273). Ann Wheat Newsl 55:256–278

    Google Scholar 

  • Kolmer JA, Anderson JE, Flor JM (2010) Chromosome location, linkage with simple sequence repeat markers, and leaf rust resistance conditioned by gene Lr63 in wheat. Crop Sci 50:2392–2395

    Article  Google Scholar 

  • Kuang H, Woo SS, Meyers BC (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16:2870–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuraparthy V, Singh H, Singh S, Chhuneja P, Dhaliwal HS (2001) Microsatellite marker linked to a leaf rust resistance gene from Triticum monococcum L. transferred to bread wheat. J Plant Biochem Biotechnol 10:127–132

    Article  Google Scholar 

  • Kuraparthy V, Sood S, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007) A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr 58. Crop Sci 47:1995–2003

    Article  CAS  Google Scholar 

  • Kuraparthy V, Sood S, See DR, Gill BS (2009) Development of a PCR assay and marker-assisted transfer of leaf rust and stripe rust resistance genes Lr 57 and Yr 40 into hard red winter wheats. Crop Sci 49:120–126

    Article  CAS  Google Scholar 

  • Kuraparthy V, Sood S, Guedira GB, Gill BS (2011) Development of a PCR assay and marker-assisted transfer of leaf rust resistance gene Lr 58 into adapted winter wheats. Euphytica 180:227–234

    Article  Google Scholar 

  • Kurapathy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007) Characterization and mapping of cryptic alien introgression from Aegilops geniculata with novel leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    Article  CAS  Google Scholar 

  • Lan CX, Ni XW, Yan J, Zhang Y, Xia XC, Chen XM, He ZH (2010) Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Mol Breed 25:615–622

    Article  CAS  Google Scholar 

  • Law CN, Wolfe MS (1966) Location for genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol 8:462–470

    Article  Google Scholar 

  • Li G, Fang T, Zhang H (2009) Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119:531–539

    Article  CAS  PubMed  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Lillemo M, Singh RP, William M, Herrera-Foessel SA, Huerta-Espino J, Germa´n S, Campos P, Chaves M, Madriaga R, Xia X, Liang S, Liu D, Li Z, Lagudah E (2011) Multiple rust resistance and gene additivity in wheat: lessons from multi-location case studies in the cultivars Parula and Saar. In: Global rust initiative meeting, St. Paul, pp 111–120

    Google Scholar 

  • Ling H-Q, Qiu J, Singh RP et al (2004) Identification and genetic characterization of an Aegilops tauschii ortholog of the wheat leaf rust disease resistance gene Lr1. Theor Appl Genet 109:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Liu ZY, Sun QX, Ni ZF, Nevo E, Yang TM (2002) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29

    Article  CAS  Google Scholar 

  • Liu S, Yu L-X, Singh RP, Jin Y, Sorrells ME, Anderson JA (2010) Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26. Theor Appl Genet 120:691–697

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Rouse M, Friebe B, Jin Y, Gill BS, Pumphrey MO (2011) Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res 19:669–682

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chang Z, Zhang X, Yang Z, Li X, Jia J, Zhan H, Guo H, Wang J (2013) Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr 50 maps on wheat chromosome arm 4BL. Theor Appl Genet 126:265–274

    Article  CAS  PubMed  Google Scholar 

  • Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361

    Article  Google Scholar 

  • Luo PG, Luo HY, Chang ZJ, Zhang HY, Zhang M, Ren ZL (2009) Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet 118:1058–1064

    Article  CAS  Google Scholar 

  • Lutz J, Hsam SLK, Limpert E, Zeller FJ (1995a) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74:152–156

    Article  Google Scholar 

  • Lutz J, Katzhammer M, Stephan U, Felsenstein FG, Oppitz K, Zeller FJ (1995b) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L. em. Thell.). V. Old German cultivars and cultivars released in the former GDR. Plant Breed 114(1):29–33

    Article  CAS  Google Scholar 

  • Ma H, Hughes GR (1993) Resistance to Septoria nodorum blotch in several Triticum. Euphytica 70:151–157

    Article  Google Scholar 

  • Ma H, Singh RP, Mujeeb-Kazi A (1995) Suppression/expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum/T. tauschii). Euphytica 83:87–93

    Article  Google Scholar 

  • Mago R, Spielmeyer W, Lawrence GJ, Lagudah ES, Ellis JG, Pryor A (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet 242(104):1317–1324

    Google Scholar 

  • Mago R, Bariana HS, Dundas IS, Spielmeyer W, Lawrence GJ, Pryor AJ, Ellis JG (2005a) Development of PCR markers for the selection of wheat stem rust resistance genes Sr 24 and Sr 26 in diverse wheat germplasm. Theor Appl Genet 111:496–504

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Miah H, Lawrence GJ, Wellings CR, Spielmeyer W, Bariana HS, Mcintosh RA, Pryor AJ, Ellis JG (2005b) High-resolution mapping and mutation analysis separate the rust resistance genes Sr 31, Lr 26 and Yr 9 on the short arm of rye chromosome 1. Theor Appl Genet 112:41–50

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Zhang P, Bariana HS, Verlin DC, Bansal UK, Ellis JG, Dundas IS (2009) Development of wheat lines carrying stem rust resistance gene Sr 39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor Appl Genet 124:65–70

    Google Scholar 

  • Mago R, Brown-Guedira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, S. Lagudah ES, Ellis J, Spielmeyer W (2011) An accurate DNA marker assay for stem rust resistance gene Sr 2 in wheat. Theor Appl Genet 122:735–744

    Google Scholar 

  • Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013a) The gene Sr33, an ortholog of Barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788

    Google Scholar 

  • Mago R, Verlin D, Zhang P, Bansal U, Bariana H S, Jin Y, Ellis J, Hoxha S and Dundas I (2013) Development of wheat–Aegilops speltoides recombinants and simple PCR based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theor Appl Genet. doi:10.1007/s00122-013-2184-8

    Google Scholar 

  • Mamluk OF, Van Slageren MW (1994). Sources of resistance to wheat diseases in Aegilops and Amblyopyrum spp. In: Proceedings of 9th congress of the Mediterranean Phytopathological Union. Kusadasi, Turkey, pp 269–270

    Google Scholar 

  • Manisterski J, Segal A, Levy AA, Feldman M (1988) Evaluation of Israeli Aegilops and Agropyron species for resistance to wheat leaf rust. Plant Dis 72:941–944

    Article  Google Scholar 

  • Marais GF, Wessels WG, Horn M (1998) Association of a stem rust resistance gene (Sr 45) and two Russian wheat aphid resistance genes (Dn5 and Dn7) with mapped structural loci in common wheat. S Afr J Plant Soil 15:67–71

    Article  Google Scholar 

  • Marais GF, McCallum B, Snyman JE, Pretorius ZA, Marais AS (2005) Leaf rust and stripe rust resistance genes Lr 54 and Yr 37 transferred to wheat from Aegilops kotschyi. Plant Breed 124:538–541

    Article  CAS  Google Scholar 

  • Marais GF, McCallum B, Marais AS (2006) Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica 149:373–380

    Article  Google Scholar 

  • Marais GF, Mccallum B, Marais AS (2008) Wheat leaf rust resistance gene Lr 59 derived from Aegilops peregrina. Plant Breed 127(4):340–345

    Article  Google Scholar 

  • Marais F, Marais A, Mccallum B, andPretorius Z (2009) Transfer of leaf rust and stripe rust resistance genes Lr 62 and Yr 42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci 49(3):871–879

    Google Scholar 

  • Marais GF, Bekker TA, Eksteen A, McCallum BD, Fetch TG, Marais AS (2009b) Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides. Euphytica 171:71–85

    Article  CAS  Google Scholar 

  • Marais GF, Badenhorst PE, Eksteen A, Pretorius ZA (2010a) Reduction of Aegilops sharonensis chromatin associated with resistance genes Lr 56 and Yr 38 in wheat. Euphytica 171(1):15–22

    Article  CAS  Google Scholar 

  • Marais GF, Kotze L, Eksteen A (2010b) Allosyndetic recombinants of the Aegilops peregrina-derived Lr 59 translocation in common wheat. Plant Breed 129(4):356–361

    CAS  Google Scholar 

  • May CE, Lagudah ES (1992) Inheritance in hexaploid wheat of septoria tritici blotch resistance and other characteristics derived from Triticum tauschii. Aust J Agric Res 43:433–442

    Article  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum speltoides and its free-threshing hexaploid relatives. J Hered 37:81–89

    PubMed  Google Scholar 

  • McGrann GR, Smith PH, Burt C, Mateos GR, Chama TN, MacCormack R, Wessels E, Agenbag G, Boyd LA (2014) Genomic and genetic analysis of the wheat race-specific yellow rust resistance gene Yr5. J Plant Sci Mol Breed 3:2

    Google Scholar 

  • McIntosh RA, Baker EP (1970) Cytogenetic studies in wheat IV. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica 19:71–77

    Article  Google Scholar 

  • McIntosh RA, Miller TE, Chapman V (1982) Cytogenetical studies in wheat. XII. Lr 28 for resistance to Puccinia recondita and Sr 34 for resistance to P. graminis tritici. Z. Pflanzenzuchtg 89:295–306

    Google Scholar 

  • McIntosh RA, Dyck PL, The TT, Cusick J, Milne DL (1984) Cytogenetical studies in wheat XIII. Sr35—a third gene from Triticum monococcum for resistance to Puccinia graminis tritici. Z. Pflanzenzuecht. 92:1–14

    Google Scholar 

  • McIntosh RA, Hart GE, Gale MD (1991) Catalogue of gene symbols: 1991 supplement. Wheat Newsl 37:200–216

    Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995a) Wheat rusts: an atlas of resistance genes. CSIRO, Melbourne

    Book  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO publications, East Melbourne

    Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2009) Catalogue of gene symbols: 2009 supplement. In: KOMUGI-Integrated wheat science database. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Roger J, Morris C, Somer DJ, Appels R, Devos KM (2010) Catalogue of gene symbols of wheat. In: KOMUGI-Integrated wheat science database. http://www.shigen.ac.jp/wheat/komugi/gene/macgene/2013/GeneCatalogueIntroduction.pdf

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, andDevos KM (2011) Catalogue of gene symbols for wheat: 2011 supplement. http://wwwshigen.nig.ac.jp/wheat/komugi/genes/download.jsp

  • McIntosh RA, Dubcovsky J, Rogers J, Morris C, Appels R, Xia X (2012) Catalogue of gene symbols for wheat: 2012 supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2009.pdf, p 247

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers J, Appels R and Devos KM (2013) Catalogue of gene symbols for wheat. In: KOMUGI-integrated wheat science database at http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp

  • Mebrate SA, Oerke EC, Dehne HW, Pillen K (2008) Mapping of the leaf rust resistance gene Lr38 on wheat chromosome arm 6DL using SSR markers. Euphytica 162:457–466

    Article  CAS  Google Scholar 

  • Mehdi V, Joshi LM, Abrol YP (1973) Studies on chapattis quality: VI. Effect of wheat grains with bunts on the quality of chapattis’. Bull Grain Technol 11:195–197

    Google Scholar 

  • Melichar JPE, Berry S, Newell C, MacCormack R, Boyd LA (2008) QTL identification and microphenotype characterisation of the developmentally regulated yellow rust resistance in UK wheat cultivar Guardian. Theor Appl Genet 117:391–399

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller TE, Reader SM, Singh D (1988) Spontaneous non-Robertsonian translocations between wheat chromosomes and an alien chromosome. In: Koebner R, Miller TE (eds) Proceedings of 7th international wheat genet symp. Institute of Plant Science Research, Cambridge, pp 387–390

    Google Scholar 

  • Miranda LM, Murphy J, Marshall PD, Leath S (2006) Pm 34: A new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113:1497–1504

    Article  CAS  PubMed  Google Scholar 

  • Miranda LM, Murphy J, Marshall PD, Cowger C, Leath S (2007) Chromosomal location of Pm 35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456

    Article  CAS  PubMed  Google Scholar 

  • Mitra M (1931) A new bunt on wheat in India. Ann Appl Biol 18:178–179

    Article  Google Scholar 

  • Mohler V, Hsam SLK, Zeller FJ, Wenzel G (2001) An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm 8/Pm 17 locus of common wheat. Plant Breed 120:448–450

    Article  CAS  Google Scholar 

  • Mohler V, Bauer C, Schweizer G, Kempf H, Hartl L (2013a) Pm 50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet 54(3):259–263

    Article  CAS  PubMed  Google Scholar 

  • Molnar I, Kubalakova M, Simkova H, Cseh A, Molnar-Lang M, Dolezel J (2011) Chromosome isolation by flow sorting in Aegilops umbellulata and Ae. comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata. PLoS One 6:e27708. doi:10.1371/journal.pone.0027708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monneveux P, Zaharieva M, Rekika D (2001) The utilisation of Triticum and Aegilops species for the improvement of durum wheat. Options Me´diterrane´nnes 40:71–81

    Google Scholar 

  • Morgunov A, Montoya J, Rajaram S (1994) Genetic analysis of resistance to Karnal bunt (Tilletia indica (Mitra)) in bread wheat. Euphytica 74:41–46

    Article  Google Scholar 

  • Mujeeb-Kazi A, Roldan S, Suh DY, Sitch LA, Farooq S (1987) Production and cytogenetic analysis of hybrids between Triticum aestivum and some caespitose Agropyron species. Genome 29:537–553

    Article  Google Scholar 

  • Mukai Y, Friebe B, Hatchett JH, Yamamoto M, Gill BS (1993) Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102:88–95

    Article  Google Scholar 

  • Murata M, Nakata N, Yasumuro Y (1992) Origin and molecular structure of a midget chromosome in a common wheat carrying rye cytoplasm. Chromosoma 102:27–31

    Article  CAS  Google Scholar 

  • Mwale VM, Chilembwe EHC, Uluko HC (2014) Wheat powdery mildew (Blumeria graminis f. sp. tritici): Damage effects and genetic resistance developed in wheat (Triticum aestivum). Int Res J Plant Sci 5:1–16

    Google Scholar 

  • Neu C, Stein N, Keller B (2002) Genetic mapping of the Lr 20Pm 1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45:737–744

    Article  CAS  PubMed  Google Scholar 

  • Niu Z, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, Xu SS (2011) Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187:1011–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Njau PN, Jin Y, Huerta-Espino J, Keller B, Singh RP (2010) Identification and evaluation of sources of resistance to stem rust race Ug99 in wheat. Plant Dis 94:413–419

    Article  Google Scholar 

  • Ohm HW, Shaner GE (1976) Three components of slow leaf-rusting at different growth stages in wheat. Phytopathology 66:1356–1360

    Article  Google Scholar 

  • Olson EL, Brown-Guedira G, Marshall D, Stack E, Bowden RL, Jin Y, Rouse M, Pumphrey MO (2010) Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr 22. Crop Sci 50:1823–1830

    Article  CAS  Google Scholar 

  • Olson EL, Rouse MN, Pumphrey MO, Bowden RL, Gill BS, Poland JA (2013) Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat. Theor Appl Genet 126(10):2477–2484

    Article  CAS  PubMed  Google Scholar 

  • Pasquini M (1980) Disease resistance in wheat. II. Behaviour of Aegilops species with respect to Puccinia recondita f. sp. tritici, Puccinia graminis f. sp. tritici and Erysiphe graminis f. sp. tritici. Genet Agrar 34:133–148

    Google Scholar 

  • Paull JG, Pallotta MA, Langridge P, The TT (1994) RFLP markers associated with Sr 22 and recombination between chromosome 7A of bread wheat and the diploid species Triticum boeoticum. Theor Appl Genet 89:1039–1045

    CAS  PubMed  Google Scholar 

  • Paux E, Sourdille P, Salse J et al (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    Article  CAS  PubMed  Google Scholar 

  • Peil A, Korzun V, Schubert V, Schumann E, Weber WE, Roder MS (1998) The application of wheat microsatellites to identify disomic Triticum aestivum-Aegilops markgrafii addition lines. Theor Appl Genet 96:138–146

    Article  CAS  Google Scholar 

  • Periyannan S, Moore J, Ayliffe M, bansal U, Wang X, Huang L (2013) The gene Sr33, an orthologue of Barley Mla genes, encodes resistance to stem rust race Ug99. Science 341:786–788

    Google Scholar 

  • Periyannan S, Bansal U, Bariana H, Deal K, Luo MC, Dvorak J, Lagudah E (2014) Identification of a robust molecular marker for the detection of the stem rust resistance gene Sr 45 in common wheat. TAG 127:947–955

    Article  CAS  PubMed  Google Scholar 

  • Perugini LD (2007) Genetic characterization of wheat germplasm with resistance to fusarium head. ProQuest, Ann Arbor

    Google Scholar 

  • Piarulli L, Gadaletaa A, Manginia G, Signorilea MA, Pasquinib M, Blancoa A, Simeone R (2012) Molecular identification of a new powdery mildew resistance gene on chromosome 2BS from Triticum turgidum ssp. dicoccum. Plant Sci 196:101–106

    Article  CAS  PubMed  Google Scholar 

  • Pietro JP, Caillaud CM, Chaubet B, Pierre JS, Trottet M (1998) Variation in resistance to the grain aphid, Sitobion avenae (Sternorhynca: Aphididae) among diploid wheat genotypes: multivariate analysis of agronomic data. Plant Breed 117:407–412

    Article  Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plamenov D, Belchev I, Kiryakova V, Spetsov P (2009) Fungal resistance of Triticum durum—T. monococcum ssp. aegilopoides amphiploid. J Plant Dis Protect 116:60–62

    Article  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253. doi:10.1371/journal.pone.0032253

    Google Scholar 

  • Prins R, Groenewald JZ, Marais GF, Snape JW, Koebner RMD (2001) AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet 103:618–624

    Article  CAS  Google Scholar 

  • Procunier JD, Townley-smith TF, Prashar S, Gray M, Kim WK, Czamecki E, Dyck PL (1995a) PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr 29 and Lr 25 in wheat (Triticum aestivum L.). J Genet Breed 49(1):87–92

    CAS  Google Scholar 

  • Purnhauser L, Gyulai G, Tar M, Csosz M, Mesterhazy A, Heszky L, Hrazdina G (2000) Use of molecular markers in wheat breeding for disease resistance. Use of agriculturally important genes in biotechnology. In: Proceedings of the NATO advanced research workshop. Szeged, Hungary, pp 52–57

    Google Scholar 

  • Qi LL, Cao MS, Chen PD, Li WL, Liu DJ (1996) Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome 39:191–197

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Zhang P, Qian C, Bowden RL, Rouse MN, Jin Y, Gill BS (2011) A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr 52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor Appl Genet 123:159–167

    Article  CAS  PubMed  Google Scholar 

  • Qiu YC, Sun XL, Zhou RH, Kong XY, Zhan SS, Jia JZ (2006) Identification of microsatellite markers linked to powdery mildew resistance gene Pm 2 in wheat. Cereal Res Commun 34(4):1267–1273

    Article  CAS  Google Scholar 

  • Ramburan VP, Pretorius ZA, Louw JH, Boyd LA, Smith PH, Boshoff WHP, Prins R (2004) A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega. Theor Appl Genet 108:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Raupp WJ, Singh S, Brown-Guerdira GL, Gill BS (2001) Cytogenetic and molecular mapping of the leaf rust resistance gene Lr 39 in wheat. Theor Appl Genet 102:347–352

    Article  CAS  Google Scholar 

  • Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences of wheat chromosomes. J Hered 76:78–81

    Google Scholar 

  • Riar AK, Kaur S, Dhaliwal HS, Singh K, Chhuneja P (2012) Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat. J Genet 91:155–161

    Article  CAS  PubMed  Google Scholar 

  • Riley R (1960) The diploidization of polyploid wheat. Heredity 15:407–429

    Article  Google Scholar 

  • Riley R, Unrau J, Chapman V (1958) Evidence on the origin of the B genome of wheat. J Hered 49:91–98

    Google Scholar 

  • Riley R, Chapman V, Johnson R (1968a) Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217:383–384

    Article  Google Scholar 

  • Riley R, Chapman V, Johnson R (1968b) The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet Res Camb 12:198–219

    Article  Google Scholar 

  • Robert O, Abelard C, Dedryver F (1999) Identification of molecular markers for the detection of the yellow rust resistance gene Yr 17 in wheat. Mol Breed 5:167–175

    Article  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, anal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  PubMed Central  Google Scholar 

  • Roelfs AP, 1988. Resistance to leaf and stem rusts in wheat. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico 10:22

    Google Scholar 

  • Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene:introgression from wild emmer into common wheat and RFLP based mapping. Euphytica 115:121–126

    Article  CAS  Google Scholar 

  • Rouse MN, Jin Y (2011) Stem rust resistance in A-genome diploid relatives of wheat. Plant Dis 95:941–944

    Article  Google Scholar 

  • Rowland GG, Kerber ER (1974) Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 16:137–144

    Article  Google Scholar 

  • Rush CM, Stein JM, Bowden RL, Riemenschneider R, Boratynski T, Royer MH (2005) Status of Karnal bunt of wheat in United States 1996–2004. Plant Dis 89:212–222

    Article  Google Scholar 

  • Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr 35 that confers resistance to Ug99 stem rust race group. Science 341(6147):783–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambroski DJ, Dyck PL (1976) Inheritance of virulence in Puccinia recondita in six backcross lines of wheat with single genes for resistance to leaf rust. Can J Bot 54:1666–1671

    Article  Google Scholar 

  • Santra DK, Chen XM, Santra M, Campbell KG, Kidwell K (2008) Identification and maping QTL for high-temperature adult-plant resistance to stripe rust in winter wheat (Triticum aestivum L.) cultivar ‘Stephens’. Theor and Appl Genet 117:793–802

    Article  CAS  Google Scholar 

  • Sarkar P, Stebbins GL (1956) Morphological evidence concerning the origin of the B genome in wheat. Am J Bot 43:297–304

    Article  Google Scholar 

  • Saur L (1991) In search of sources of resistance to head blight caused by Fusarium culmorum in wheat and related species. Agronomie 11:535–541

    Article  Google Scholar 

  • Sax K (1922) Sterility in wheat hybrids. II. Chromosome behavior in partially sterile hybrids. Genetics 7:513–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schachermayr G, Siedler H, Gale MD, Winzeler H, Winzeler M, Keller B (1994) Identification and localization of molecular markers linked to the Lr 9 leaf rust resistance gene of wheat. Theor Appl Genet 88:110–115

    Article  CAS  PubMed  Google Scholar 

  • Schmolk M, Mohler V, Hartl L, Zeller FJ, Sai L, Hsam K (2012) A new powdery mildew resistance allele at the Pm 4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breed 29:449–456

    Article  CAS  Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop Harrison J S (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324

    Google Scholar 

  • Schwarzacher T, Anamthawat-Jonsson K, Harrison GE, Islam AKMR, Jia JZ, King IP, Leitch AR, Miller TE, Reader SM, Rogers WJ, Shi M, Heslop-Harrison JS (1992) Genome in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet 84:778–786

    CAS  PubMed  Google Scholar 

  • Seah S, Bariana H, Jahier J, Sivasithamparam K, Lagudah ES (2001) The introgressed segment carrying rust resistance genes Yr17, Lr37 and Sr38 in wheat can be analysed by a cloned disease resistance gene-like sequence. Theor Appl Genet 102:600–605

    Article  CAS  Google Scholar 

  • Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp in Biol. No. 9, Genetics in Plant Breeding, pp 1–22

    Google Scholar 

  • Sears ER (1972) Chromosome engineering in wheat. In: Stadler Symp, vol 4. University of Missouri, Columbia, pp 23–38

    Google Scholar 

  • Sears ER (1977) Induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19:585–593

    Article  Google Scholar 

  • Sears ER (1981) Transfer of alien genetic material to wheat. In: Evans LT, Peacock WJ (eds) Wheat science today and tomorrow, pp 75–89

    Google Scholar 

  • Sears ER, Briggle LW (1969) Mapping the gene Pm 1 for resistance to Erysiphe graminis f.p. tritici on chromosome 7A of wheat. Crop Sci 9:96–97

    Article  Google Scholar 

  • Seyfarth R, Feuillet C, Schachermayr G, Winzeler M, Keller B (1999) Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theor Appl Genet 99:554–560

    Article  CAS  PubMed  Google Scholar 

  • Shaner GE, Roberts JJ, Finney RE (1972) A culture of Puccinia recondita virulent on the wheat cultivar Transfer. Plant Dis Rep 56:827–830

    Google Scholar 

  • Sharma HC, Gill BS (1983) Current status of wide hybridization. Euphytica 32:17–31

    Article  Google Scholar 

  • Shen X, Zhou M, Lu W, Ohm H (2003a) Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Theor Appl Genet 106:1041–1047

    CAS  PubMed  Google Scholar 

  • Shen XR, Ittu M, Ohm HW (2003b) Quantitative loci conditioning resistance to Fusarium head blight in wheat line F201R. Crop Sci 43:850–857

    Article  CAS  Google Scholar 

  • Shi A, Leath S, Murphy JP (1998) A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88:144–147

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Abate Z, Chao S, Zhang W, Rouse M, Jin Y, Elias E, Dubcovsky J (2011) Genetic mapping of stem rust resistance gene Sr 13 in tetraploid wheat (Triticum turgidum ssp. durum L.). Theor Appl Genet 122:649–658

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh G, Rajaram S, Montoya J, Fuentes-Davila G (1995) Genetic analysis of Karnal bunt resistance in 14 Mexican bread wheat genotypes. Plant Breed 114:439–441

    Article  Google Scholar 

  • Singh H, Grewal TS, Dhaliwal HS, Pannu PPS, Bagga PS (1998) Sources of leaf rust and stripe rust resistance in wild relatives of wheat. Crop Improv 25:26–33

    Google Scholar 

  • Singh H, Grewal TS, Pannu PPS, Dhaliwal HS (1999) Genetics of resistance to Karnal bunt (Tilletia indica Mitra) in bread wheat. Euphytica 105:125–131

    Article  Google Scholar 

  • Singh RP, Nelson JC, Sorrells ME (2000a) Mapping Yr 28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155

    Article  CAS  Google Scholar 

  • Singh H, Tsujimoto H, Sakhuja PK, Singh T, Dhaliwal HS (2000b) Transfer of resistance to wheat pathogens from Aegilops triuncialis into bread wheat. Wheat Inf Ser 91:5–10

    Google Scholar 

  • Singh RP, William HM, Huerta-Espino J, Crosby M (2003) Identification and mapping of gene Yr31 for resistance to stripe rust in Triticum aestivum cultivar Pastor. In: Proceedings 10th international wheat genetics symposium, Instituto Sperimentale per la

    Google Scholar 

  • Singh RP, William HM, Huerta-Espino J, Rosewarne G (2004a) Wheat rust in Asia: meeting the challenges with old and new technologies. In: New directions for a diverse planet. Proc 4th Int Crop Sci Cong, 26 Sept–1 Oct 2004, Brisbane, Australia

    Google Scholar 

  • Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshall DS, Gill BS, Fritz A (2004b) Lr 41, Lr 39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Chhuneja P, Ghai M, Kaur S, Goel RK, Bains NS, Keller B, Dhaliwal HS (2007a) Molecular mapping of leaf and stripe resistance genes in Triticum monococcum and their transfer to hexaploid wheat. In: Buck H, Nisi JE, Solomon N (eds) Wheat production in stressed environments. Springer, Neatherlands, pp 779–786

    Chapter  Google Scholar 

  • Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T, Keller B, Dhaliwal HS (2007b) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum X T. monococcum RIL population. Theor Appl Genet 115:301–312

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P et al (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309

    Article  CAS  Google Scholar 

  • Singh K, Chhuneja P, Singh I, Sharma SK, Garg T, Garg M, Keller B, Dhaliwal HS (2010) Molecular mapping of cereal cyst nematode resistance in Triticum monococcum L. and its transfer to the genetic background of cultivated wheat. Euphytica 176:213–222

    Article  CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49(1):465–481

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Moullet O, Laroche A, Lagudah ES (2000) Highly recombinogenic region at seed storage protein loci on chromosome 1DS of Aegilops tauschii, the D genome donor of wheat. Genetics 155:361–367

    Google Scholar 

  • Stepien L, Golka L, Chekowski J (2003) Leaf rust resistance genes of wheat: identification in cultivars and resistance sources. Theor Appl Genet 44:139–149

    Google Scholar 

  • Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A, Ronin YI, Nevo E (1997) Identification of molecular markers linked to the Yr 15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 95:622–628

    Article  CAS  Google Scholar 

  • Taketa S, Nakazaki T, Schwarzacher T, Heslop-Harrison JS (1997) Detection of a 4DL chromosome segment translocated to rye chromosome 5R in an advanced hexaploid triticale line Bronco 90. Euphytica 97:91–96

    Article  Google Scholar 

  • Tao W, Liu D, Liu J, Feng Y, Chen P (2000) Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis. Theor Appl Genet 100:564–568

    Article  CAS  Google Scholar 

  • Tar M, Purnhauser L, Csõsz M (2008) Identification and localization of molecular markers linked to the Lr 52 leaf rust resistance gene of wheat. Cereal Res Commun 36:409–415

    Article  CAS  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • The TT, McIntosh RA, Bennett FGA (1979) Cytogenetical studies in wheat. Monosomic analysis, telocentric mapping and linkage relationship of gene Sr 21, Pm 4 and Mle. Aust J Biol Sci 32:115–125

    Google Scholar 

  • Thomas J, Nilmalgoda S, Hiebert C, McCallum B, Humphreys G (2010) Genetic markers and leaf rust resistance of the wheat gene Lr32. Crop Sci 50:2310–2317

    Article  Google Scholar 

  • Tiwari VK, Wang S, Sehgal S, Vrána J, Friebe B, Kubaláková M, Chhuneja P, Doležel J, Akhunov E, Kalia B, Sabir J, Gill BS (2014) SNP discovery for mapping alien introgressions in wheat. BMC Genom 15:273–283

    Article  Google Scholar 

  • Tomar SMS, Menon MK (1998) Introgression of alien genes for leaf rust (Puccinia recondita) resistance into bread wheat (Triticum aestivum) cultivars. Indian J Agric Sci 68:675–681

    Google Scholar 

  • Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265

    Article  Google Scholar 

  • Tsilo TJ, Jin Y, Anderson JA (2008) Diagnostic microsatellite markers for the detection of stem rust resistance gene Sr 36 in diverse genetic backgrounds of wheat. Crop Sci 48:253–261

    Article  CAS  Google Scholar 

  • Vaccino P, Accerbi M, Corbellini M (1993) Cultivar identification in Triticum aestivum using highly polymorphic RFLP probes. Theor Appl Genet 86:833–836

    Article  CAS  PubMed  Google Scholar 

  • Valkoun J, Kucerova D, Bartos P (1986) Transfer of leaf rust resistance from Triticum monococcum L. to hexaploid wheat. Z PXanzenzucht 96:271–278

    Google Scholar 

  • Van Slageren MW (1994) Wild wheats: a monograh of Aegilops L. and Amblyopyrum (Jacub. And Spadi) Eig (Poaceae). Wageningen Agricultural University Papers. 94–7:512

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Vikal Y, Chhuneja P, Singh R, Dhaliwal HS (2004) Tagging of an Aegilops speltoides derived leaf rust resistance genes Lr 28 with a microsatellite marker in wheat. J Plant Biochem Biotech 13:47–49

    Article  CAS  Google Scholar 

  • Villareal RL, Mujeeb-Kazi A, Deltoro E, Crossa J, Rajaram S (1994a) Agronomic variability in selected Triticum turgidum × T. tauschii synthetic hexaploid wheats. J Agron Crop Sci 173:307–317

    Article  Google Scholar 

  • Villareal RL, Mujeeb-Kazi A, Rajaram S, Deltoro E (1994b) Morphological variability in some synthetic hexaploid wheats derived from Triticum turgidum × Triticum tauschii. J Genet Breed 48:7–16

    Google Scholar 

  • Villareal RL, Fuentes-Davila G, Mujeeb-Kazi A, Rajaram S (1995) Inheritance of resistance to Tilletia indica (Mitra) in synthetic hexaploids X Triticum aestivum crosses. Plant Breed 114:547–548

    Article  Google Scholar 

  • Villareal RL, Sayre K, Bañuelos O, Mujeeb-Kazi A (2001) Registration of four synthetic hexaploid wheat (Triticum turgidum/Aegilops tauschii) germplasm lines tolerant to water logging. Crop Sci 41:274

    Article  Google Scholar 

  • Waines JG, Payne PI (1987) Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum). Theor Appl Genet 74:71–76

    Article  CAS  PubMed  Google Scholar 

  • Wilcoxon RD (1981) Genetics of slow rusting in cereals. Phytopathology 71:989–993

    Article  Google Scholar 

  • Williams CE, Collier CC, Sardesai N, Ohm HW, Cambron SE (2003) Phenotypic assessment and mapped markers for H31, a new wheat gene conferring resistance to Hessian fly (Diptera: Cecidomyiidae). Theor Appl Genet 107:1516–1523

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Pumphrey M, Bai G (2009) Molecular mapping of stem rust-resistance gene Sr40 in wheat. Crop Sci 49:1681–1686

    Article  CAS  Google Scholar 

  • Xiao M, Song F, Jiao J, Wang X, Xu H, Li H (2013) Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet 126:1397–1403

    Article  CAS  PubMed  Google Scholar 

  • Xie CJ, Sun QX, Yang ZM (2003) Resistance of wild emmers from Israel to wheat rusts and powdery mildew at seedling stage. J Triticeae Crops 23:39–42

    Google Scholar 

  • Xu SS, Jin Y, Klindworth DL, Wang R-C, Cai X (2009) Evaluation and characterization of seedling resistances to stem rust Ug99 races in wheat-alien species derivatives. Crop Sci 49:2167–2175

    Article  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy level alows cloning of powdery mildew resistance gene Pm 3b from hexaploid wheat. Plant J 37:528–538

    Article  CAS  PubMed  Google Scholar 

  • Yahiaoui N, Brunner S, Keller B (2006) Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J 47:85–98

    Article  CAS  PubMed  Google Scholar 

  • Yahiaoui N, Kaur N, Keller B (2009) Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. Plant J 57:846–856

    Article  CAS  PubMed  Google Scholar 

  • Yamaleev AM, Dolotovskii IM, Noikonov VI (1989) Relationship between resistance of wheat root rots and genome composition. Doklady Vsesoyuznoi Ordena Lenina i Ordena Trudovogo Krasnogo Znameni Akademii Sel’skhozyaistvennykh Nauk Imeni V.I. Lenina 6:4–6

    Google Scholar 

  • Yamamori M (1994) An N-band marker for gene Lr 18 for resistance to leaf rust in wheat 89(5):643–646

    Google Scholar 

  • Yao G, Zhang J, Yang L, Xu H, Jiang Y, Xiong L, Zhang C, Zhang Z, Ma Z, Sorrells ME (2007) Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theor Appl Genet 114:351–358

    Article  CAS  PubMed  Google Scholar 

  • Yen C, Yang JL, Liu XD, Li LR (1983) The distribution of Aegilops tauchii Cosson in China with reference to the origin of the Chinese common wheat. In: Sakamoto S (ed) Proc VI Int Wheat Genet Symp, Kyoto. Maruzen, Kyoto, pp 55–58

    Google Scholar 

  • Yildirim A, Jones SS, Murray TD, Cox TS, Line RF (1995) Resistance to stripe rust and eyespot diseases of wheat in Triticum tauschii. Plant Dis 79:1230–1236

    Article  Google Scholar 

  • Young ND, Tanksley SD (1989) RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77:353–359

    Article  CAS  PubMed  Google Scholar 

  • Yu BS, Sun GR (1995) Preliminary study of several spring wheat varieties for resistance to Septoria diseases. Crop Genet Resour 1:27–29 (in Chinese)

    Google Scholar 

  • Yu G, Zhang Q. Friesen T L, Rouse MN, Jin Y, Zhong S, Rasmussen JB, Lagudah ES, Xu SS (2011) Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen. Theor Appl Genet 128:431–443

    Google Scholar 

  • Zeller, FJ (1973) 1B/1R wheat-rye chromosome substitutions and translocations. In Sears ER, Sears LMS (eds) Proceedings of 4th int wheat genetics symposium, Columbia, Missouri, pp 209–221

    Google Scholar 

  • Zeller FJ, Kong L, Hart L, Mohler V, Hsam SLK (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) gene Pm 29 in line Pova. Euphytica 123:187–194

    Article  CAS  Google Scholar 

  • Zhang P, Dreisigacker S, Meichinger AE, Reif JC, Mujeeb Kazi A, Van Ginkel M, Hoisington D, Warburton ML (2005) Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcross-derived lines using SSR markers. Mol Breed 15:1–10

    Article  CAS  Google Scholar 

  • Zhang Q, Klindworth DL Friesen TL, Chao S, Jin Y, Cai X, Xu SS (2012) Development and characterization of wheat lines with Sr37 for stem rust resistance derived from wild Timopheev's wheat. Meeting Abstract, p. 316

    Google Scholar 

  • Zhu ZD, Zhou RH, Kong XY, Dong YC, Jia JZ (2005) Microsatellite markers linked to two genes conferring resistance to powdery mildew in common wheat introgressed from Triticum carthlicum acc. PS5. Genome 48:585–590

    Article  CAS  PubMed  Google Scholar 

  • Zohary D, Harlan JR, Vardi A (1969) The wild diploid progenitors of wheat and their breeding value. Euphytica 18:58–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parveen Chhuneja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chhuneja, P., Kaur, S., Dhaliwal, H.S. (2016). Introgression and Exploitation of Biotic Stress Tolerance from Related Wild Species in Wheat Cultivars. In: Rajpal, V., Rao, S., Raina, S. (eds) Molecular Breeding for Sustainable Crop Improvement. Sustainable Development and Biodiversity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-27090-6_12

Download citation

Publish with us

Policies and ethics