Skip to main content

Use of Alien Genetic Variation for Wheat Improvement

  • Chapter
  • First Online:
Molecular Breeding for Sustainable Crop Improvement

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 11))

Abstract

Wheat production and productivity at the global level has witnessed a remarkable improvement during the last five decades, thus helping in providing food security. However, the annual growth rate in wheat production has declined from ~3 % in earlier decades to 0.5–0.7 % in recent years causing concern. Therefore, major worldwide efforts are being made to improve the yield potential of bread wheat. In this connection, alien genetic variation has been found to be an important source of genetic variation both for qualitative and quantitative traits of agronomic importance. A number of alien species belonging to the tribe Triticeae of the family Poaceae have been utilized for this purpose. These alien species have been utilized through the production of amphiploids, whole chromosome alien addition and substitution lines, whole-arm Robertsonian translocations, and the translocations involving small segments of alien chromosomes. The transfer of small segments carrying desirable alien genes was achieved through several approaches including irradiation, use of mutants, and suppression of diploidizing gene (Ph1) . These alien resources along with the details of their successful utilization for wheat improvement have been described in this chapter.

The erratum of this chapter can be found under DOI 10.1007/978-3-319-27090-6_17

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-27090-6_17

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Autrique E, Singh RP, Tanksley SD, Sorrells ME (1995) Molecular markers for four leaf rust resistance genes introgressed into wheat from wild species. Genome 38:75–83

    Article  CAS  PubMed  Google Scholar 

  • Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and its genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482

    Article  CAS  PubMed  Google Scholar 

  • Baum BR, Estes JR, Gupta PK (1987) Assessment of the genomic system of classification in the Triticeae. Amer J Bot 74:1388–1395

    Article  Google Scholar 

  • Bossolini E, Krattinger SG, Keller B (2006) Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor Appl Genet 113:1049–1062

    Google Scholar 

  • Bowden WM (1959) The taxonomy and nomenclature of the wheats, barleys, and ryes and their wild relatives. Can J Bot 37:657–684

    Article  Google Scholar 

  • Brown-Guedira GL, Cox TS, Gill BS, Sears RG (1999) Registration of KS96WGRC35 and KS96WGRC36 leaf rust-resistant hard red winter wheat germplasms. Crop Sci 39:595

    Article  Google Scholar 

  • Brown-Guedira GL, Gill BS, Fritz AK (2003) Performance and mapping of leaf rust resistance transferred to wheat from Triticum timopheevii subsp. armeniacum. Phytopathology 93:784–789

    Article  CAS  PubMed  Google Scholar 

  • Cabrera A, Friebe B, Jiang J, Gill BS (1995) Characterization of Hordeum chilense chromosomes by C-banding and in situ hybridization using highly repeated DNA probes. Genome 38:435–442

    Article  CAS  PubMed  Google Scholar 

  • Calderini DF, Ortiz-Monasterio I (2003) Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Sci 43:141–151

    Article  CAS  Google Scholar 

  • Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Chen P (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA 108:7727–7732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceoloni C, Forte P, Ciaffi M, Nenno M, Bitti A, De Vita P, D’Egidio MG (2000) Chromosomally engineered durum wheat: the potential of alien gene introgressions affecting disease resistance and quality. In: Royo C et al. (eds) Durum wheat improvement in the Mediterranean region: new challenges. CIHEAM, Zaragoza, pp 363–371

    Google Scholar 

  • Chen Q (2005) Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe—a landmark approach for Thinopyrum genome research. Cytogenet Genome Res 109:350–359

    Google Scholar 

  • Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Prashar M, Dhaliwal HS (2008) Transfer of leaf rust and stripe rust resistance from Aegilops umbellulata Zhuk to bread wheat (Triticum aestivum L.). Genet Res Crop Evol 55:849–859

    Google Scholar 

  • Cooper JK (2013) Synthetic hexaploid wheat as a source of improvement for winter wheat (Triticum aestivum L.) in texas. A&M University, Texas

    Google Scholar 

  • Cooper JK, Ibrahim A, Rudd J, Malla S, Hays DB, Baker J (2012) Increasing hard winter wheat yield potential via synthetic wheat: I. Path-coefficient analysis of yield and its components. Crop Sci 52:2014–2022

    Article  Google Scholar 

  • Cox TS, Raupp WJ, Gill BS (1994a) Leaf rust-resistance genes Lr41, Lr42, and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci 34:339–343

    Google Scholar 

  • Cox TS, Sears RG, Gill BS, Jellen RN (1994b) Registration of KS91WGRC11, KS92WGRC15, and KS92WGRC23 leaf rust resistant hard red winter wheat germplasms. Crop Sci 34:546

    Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with perennial Triticeae. In: Gustafsson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 209–279

    Google Scholar 

  • Driscoll CJ, Jensen NF (1964) Characteristics of leaf rust transferred from rye to wheat. Crop Sci 4:372–374

    Article  Google Scholar 

  • Dvorak J, Knott DR (1990) Location of a Triticum speltoides chromosome segment conferring resistance to leaf rust in Triticum aestivum. Genome 33:892–897

    Article  Google Scholar 

  • Dyck PL (1977) Genetics of leaf rust reaction in three introductions of common wheat. Can J Genet Cytol 19:711–716

    Article  Google Scholar 

  • Dyck PL, Kerber ER (1970) Inheritance in hexaploid wheat of adult-plant leaf rust resistance derived from Aegilops squarrosa. Can J Genet Cytol 12:175–180

    Article  Google Scholar 

  • Evans LE (1964) Genome construction within the Triticinae. I. The synthesis of hexaploid (2n = 42) having chromosomes of Agropyron and Aegilops in addition to the A and B genomes of Triticum durum. Can J Genet Cytol 6(1):19–28

    Google Scholar 

  • Evans LE, Jenkins BC (1960) Individual Secale cereale chromosome additions to Triticum aestivum. I. The addition of individual “Dakold” fall rye chromosomes to “Kharkov” winter wheat and their subsequent identification. Can J Genet Cytol 2:205–215

    Google Scholar 

  • Farkas A, Molnar I, Dulai S, Rapi S, Oldal V, Cseh A, Kruppa K, Molnar-Lang M (2014) Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat–Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH. Genome 57:61–67

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Mukai Y, Dhaliwal HS, Martin TJ, Gill BS (1991) Identification of alien chromatin specifying resistance to wheat streak mosaic virus and greenbug in wheat germplasm by C-banding and in situ hybridization. Theor Appl Genet 81:381–389

    Google Scholar 

  • Friebe B, Mukai Y, Gill BS, Cauderon Y (1992a) C-banding and in situ hybridization analyses of Agropyron intermedium, a partial wheat × Ag. intermedium amphiploid, and six derived chromosome addition lines. Theor Appl Genet 84:899–905

    CAS  PubMed  Google Scholar 

  • Friebe B, Zeller FJ, Mukai Y, Forster BP, Bartos P, Mclntosh RA (1992b) Characterization of rest-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theor Appl Genet 83:775–782

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Mukai Y, Gill BS, Cauderon Y (1992c) C-banding and in-situ hybridization analyses of Agropyron intermedium, a partial wheat × Ag. intermedium amphiploid, and six derived chromosome addition lines. Theor Appl Genet 84:899–905

    CAS  PubMed  Google Scholar 

  • Friebe B, Tuleen N, Jiang J, Gill BS (1993) Standard karyotype of Triticum longissimum and its cytogenetic relationship with T. aestivum. Genome 36:731–742

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Jiang J, Tuleen N, Gill BS (1995a) Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor Appl Genet 90:150–156

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Jiang J, Tuleen N, Gill BS (1995b) Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor Appl Genet 90:150–156

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Zhang W, Porter DR, Gill BS (1995c) Nonhomoeologous wheat-rye translocations conferring resistance to greenbug. Euphytica 84:121–125

    Article  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996a) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Friebe B, Tuleen NA, Badaeva ED, Gill BS (1996b) Cytogenetic identification of Aegilops peregrinum chromosomes added to common wheat. Genome 39:272–276

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Raupp WJ, Gill BS (1998) Alien sources for disease and pest resistance in wheat improvement. In: Lelley T (ed) Current topics in plant cytogenetics related to plant improvement ’97, WUV-Universitatsverlag, Vienna, Austria, pp 63–71. Proceedings of an international symposium, Tulln, Austria, 21–22 Feb 1997

    Google Scholar 

  • Friebe B, Qi LL, Nasuda S, Zhang P, Tuleen NA, Gill BS (2000) Development of a complete set of Triticum aestivum-Aegilops spelotoides chromosome addition lines. Theor Appl Genet 101:51–58

    Article  Google Scholar 

  • Friebe B, Zhang P, Linc G, Gill BS (2005) Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet Genome Res 109:293–297

    Article  CAS  PubMed  Google Scholar 

  • Gill BS, Kimber G (1974) The Giemsa C-banded karyotype of rye. Proc Natl Acad Sci 71:1247–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill BS, Gill KS, Friebe B (1996) Expanding genetic maps: reevaluation of the relationship between chiasmata and crossovers. Chromosomes Today 12:283–298

    Google Scholar 

  • Gupta PK (1995) Cytogenetics. Rastogi Publications, Meerut, India

    Google Scholar 

  • Gupta PK, Baum BR (1986) Nomenclature and related taxonomic issues in wheats, triticales and some of their wild relatives. Taxon 35:144–149

    Article  Google Scholar 

  • Hu L, Li G, Zhan H, Liu C, Yang Z (2012) New St-chromosome-specific molecular markers for identifying wheat–Thinopyrum intermedium derivative lines. J Genet 91:e69–e74

    PubMed  Google Scholar 

  • Huang L, Gill BS (2001) An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor Appl Genet 103:1007–1013

    Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    Google Scholar 

  • Huang HP, Newman M, Seager R, Kushnir Y, Participating CMIP2 + Modeling Groups (2004) Relationship between tropical Pacific SST and global atmospheric angular momentum in coupled models, LDEO Report, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York USA, p 43

    Google Scholar 

  • Innes RL, Kerber ER (1994) Resistance to wheat leaf rust and stem rust in Triticum tauschii and inheritance in hexaploid wheat of resistance transferred from T. tauschii. Genome 37:813–822

    Article  CAS  PubMed  Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46(2):161–174

    Article  Google Scholar 

  • Islam AKMR, Shepherd KW (1991) Alien genetic variation in wheat improvement. In: Gupta PK, Tsuchiya T (eds) Chromosome engineering in plants: genetics, breeding, evolution. Part A. Elsevier, Amsterdam, Oxford, New York, and Tokyo, pp 291–312

    Google Scholar 

  • Jauhar PP, Peterson TS (2013) Synthesis and characterization of advanced durum wheat hybrids and addition lines with Thinopyrum chromosomes. J Hered 104:428–436

    Article  CAS  PubMed  Google Scholar 

  • Jenkin M, Shepherd KQ, Brown AHD (1984) Isozyme variation associated with the 9A-1 Agropyron translocation in wheat and genetic mapping of its breakpoint. Waite Agricultural Research Institute Biennial Report 1984–85, Adelaide, p 72

    Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994a) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  Google Scholar 

  • Jiang J, Morris KLD, Gill BS (1994b) Introgression of Elymus trachycaulus chromatin into common wheat. Chrom Res 2:3–13

    Article  CAS  PubMed  Google Scholar 

  • Joppa LR (1987) Aneuploid analysis in tetraploid wheat. In: Heyne EG (ed) Wheat and wheat improvement. American Society of Agronomy, Madison, WI, USA, pp 255–267

    Google Scholar 

  • Joppa LR (1993) Chromosome engineering in tetraploid wheat. Crop Sci 33:908–913

    Article  Google Scholar 

  • Kazi M, Van Ginkel M (2004) Wild wheat relatives help boost genetic diversity. CIMMYT News

    Google Scholar 

  • Kerber ER (1987) Resistance to leaf rust in wheat: Lr32, a third gene derived from Triticum tauschii. Crop Sci 27:204–206

    Google Scholar 

  • Kerber ER, Dyck PL (1969) Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 11:639–647

    Article  Google Scholar 

  • Kerber ER, Dyck PL (1990) Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an ampliploid of Aegilops speltoides, “Triticum monococcum”. Genome 33:530–537

    Google Scholar 

  • Kim SG, Ashe J, Hendrich K, Ellermann JK, Merkle H, Ugrubil K, Georgopolus AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 161:615–617

    Article  Google Scholar 

  • Knott DR (1971) The transfer of genes for disease resistance from alien species to wheat by induced translocations. In: Proceedings of a panel organized by FAO/IAEA on mutation breeding for disease resistance, Vienna, pp 67–77

    Google Scholar 

  • Knott DR (1987) Transferring alien segments to wheat. In: Heyne EG (ed) Wheat and wheat improvement, 2nd edn, Monograph 13 Amer Soc Agron Md Wisconsin, pp 462–471

    Google Scholar 

  • Koebner RMD, Shepherd KW (1986) Controlled introgression to wheat of genes from rye chromosome arm 1RS by induction of allosyndesis I. Isolation of recombinants. Theor Appl Genet 73:197–208

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Kumar N, Balyan HS, Gupta PK (2003) 1BL.1RS translocation in some Indian bread wheat genotypes and strategies for its use in future wheat breeding. Caryologia 56(1):23–30

    Article  Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007a) Characterization and mapping of cryptic introgression from Ae. geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007b) Characterization and mapping of Aegilops geniculata introgressions with novel leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    Google Scholar 

  • Kuraparthy V, Sood S, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007c) A cryptic wheat–Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci 47:1995–2003

    Google Scholar 

  • Lage J, Skovmand B, Andersen S (2004) Field evaluation of emmer wheat-derived synthetic hexaploid wheat for resistance to Russian wheat aphid (homoptera: Aphididae). J Econ Ent 97:1065–1070

    Article  CAS  Google Scholar 

  • Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–30

    Google Scholar 

  • Lange W, Jochemsen G (1992) Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat (T. aestivum), through chromosome-doubled hybrids. Euphytica 59:197–212

    Google Scholar 

  • Ling HQ, Qiu JW, Singh RP, Keller B (2004) Identification and genetic characterization of an Aegilops tauschii ortholog of the wheat leaf rust disease resistance gene Lr1. Theor Appl Genet 109:1133–1138

    Google Scholar 

  • Liu W, Rouse M, Friebe B, Jin Y, Gill BS, Pumphrey MO (2011) Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res 19:669–682

    Google Scholar 

  • Love A (1984) Conspectus of the Triticeae. Feddes Repertorium 95:425–521

    Google Scholar 

  • Luig NH, McIntosh RA (1968) Location and linkage of genes on wheat chromosome 2D. Can J Genet Cytol 10:99–105

    Article  Google Scholar 

  • Marais GF, McCallum B, Snyman JE, Pretorius ZA, Marais AS (2005) Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred ro wheat from Aegilops kotschyi. Plant Breed 124:538–541

    Google Scholar 

  • Marais GF, McCallum B, Marais AS (2006) Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica 149:373–380

    Google Scholar 

  • McIntosh RA (1983) Genetic and cytogenetic studies involving Lr18 resistance to Puccinia recondita. In: Sakamoto S (ed) Proceedings of the 6th international wheat genetics symposium, Plant Germ-Plasm Institute, Kyoto, Japan, pp 777–783

    Google Scholar 

  • McIntosh RA, Baker EP, Driscoll CJ (1965) Cytogenetic studies in wheat. I. Monosomic analysis of leaf rust resistance in cultivars Uruguay and Transfer. Aust J of Biol Sci 18:971–977

    Google Scholar 

  • McIntosh RA, Dyck PL, Green GJ (1977) Inheritance of leaf and item rust resistance in wheat cultivars Agent and Agatha. Aust J of Agri Res 28:37–45

    Article  Google Scholar 

  • McIntosh RA, Miller TE, ChapmanV (1982) Cytogenetical studies in wheat. XII. Lr28 for resistance to Puccinia recondita and Sr34 for resistance to P. graminis tritici. Zeitschrift für Panzenzü chtung 92:1–14

    Google Scholar 

  • Miller D (1991) Genetic analysis of leaf rust resistance in Triticum tauschii, the D-genome progenitor of wheat. MS thesis, Kansas State University, Manhattan, USA

    Google Scholar 

  • Molnár I, Molnár-Láng M (2010) GISH reveals different levels of meiotic pairing with wheat for individual Aegilops biuncialis chromosomes. Biol Plant 54:259–264

    Article  Google Scholar 

  • Molnar I, Nenavente E, Molnar-Lang M (2009) Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum-Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome 52:156–165

    Google Scholar 

  • Moorthy JN, Venkatakrishnan P, Savithaa G, Weiss RG (2006) Cis → trans and trans → cis isomerizations of styrylcoumarins in the solid state. Importance of the location of free volume in crystal lattices. Photochem Photobiol Sci 5:903–913

    Article  CAS  PubMed  Google Scholar 

  • Mujeeb-Kazi A, Rajaram S (2002) Transferring alien genes from related species and genera for wheat improvement. In: Curtis BC, Rajaram S, Gómez Macpherson H (eds) Bread wheat: improvement and protection FAO plant production and protection series. FAO, Rome

    Google Scholar 

  • Mukai Y, Friebe B, Gill BS (1992) Comparison of C-banding patterns hybridization sites using highly repetitive and total genomic rye DNA probes of ‘Imperial’ rye chromosomes added to ‘Chinese Spring’ wheat. Jpn J Genet 67:71–83

    Article  Google Scholar 

  • Mukai Y, Yamamoto M (1998) Application of multicolor fluorescence in situ hybridization to plant genome analysis. In: Gupta PK, Singh SP, Balyan HS, Sharma PC, Ramesh B (eds) Genetics and biotechnology in crop improvement. Rastogi Publications, Meerut, pp 14–23

    Google Scholar 

  • Naik S, Gill KS, Prakasa VS, Gupta VS, Tamhanka SA, Pujar S, Gill BS, Ranjekar PK (1998) Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theor Appl Genet 97:535–540

    Google Scholar 

  • Naz AA, Kunert A, Lind V, Pillen K, Leon J (2008) AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population. Theor Appl Genet 116:1095–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neelam K, Brown-Guedira G, Huang L (2013) Development and validation of a breeder-friendly KASPar marker for wheat leaf rust resistance locus Lr21. Mol Breed 31:233–237

    Article  CAS  Google Scholar 

  • Nichols PGH (1983) Investigations of the amount of Agropyron chromatin in wheat cultivars ‘Eagle’ and ‘Kite’. Honours thesis, University of Adelaide, p 94

    Google Scholar 

  • Niu ZX, Klindworth DL, Friesen TL, Chao SM, Jin Y, Cai XW, Xu SS (2011) Targeted introgression of a wheat stem rust resistance gene by DNA marker assisted chromosome engineering. Genetics 187:1011–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa V, Madrid E, Said M, Rubiales D, Cabrera A (2015) Molecular and cytogenetic characterization of a common wheat-Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica 201:89–95

    Google Scholar 

  • Ogbonnaya FC, Ye G, Trethowan R, Dreccer F, Lush D, Shepperd J, Van Ginkel M (2007) Yield of synthetic backcross-derived lines in rainfed environments of Australia. Euphytica 157:321–336

    Article  Google Scholar 

  • Ogbonnaya FC, Abdalla O, Mujeeb-Kazi A, Kazi AG, Xu SS, Gosman N, Lagudah ES, Bonnett D, Sorrells ME (2013) Synthetic hexaploid in wheat improvement. In: Janick J (ed) Plant breeding reviews, vol 37. pp 35–122

    Google Scholar 

  • Olson EL et al (2013) Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat. Theor Appl Genet 126:2477–2484

    Article  CAS  PubMed  Google Scholar 

  • Procunier JD, Townley-Smith TF, Fox S, Prashar S, Gray M, Kim WK, Czarnecki E, Dyck PL (1995) PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.). J Genet Breed 49:87–92

    CAS  Google Scholar 

  • Qi LL, Wang SL, Chen PD, Liu DJ, Friebe B, Gill BS (1997) Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theor Appl Genet 95:1084–1091

    Article  CAS  Google Scholar 

  • Rattey A, Shorter R, Chapman S, Dreccer F, Van HA (2009) Variation for and relationships among biomass and grain yield component traits conferring improved yield and grain weight in an elite wheat population grown in variable yield environments. Crop Pasture Sci 60:717–729

    Article  Google Scholar 

  • Rattey A, Shorter R, Chapman S (2011) Evaluation of CIMMYT conventional and synthetic spring wheat germplasm in rainfed sub-tropical environments. I. Grain yield components and physiological traits. Field Crop Res 124:195–204

    Article  Google Scholar 

  • Raupp WJ, Singh S, Brown-Guedira GL, Gill BS (2001) Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor Appl Genet 102:347–352

    Google Scholar 

  • Riar AK, Kaur S, Dhaliwal HS, Singh K, Chhuneja P (2012) Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat. J Genet 91:155–161

    Google Scholar 

  • Riley R (1960) The meiotic behaviour, fertility and stability of wheat-rye chromosome addition lines. Heredity 14:89–100

    Article  Google Scholar 

  • Riley R (1966) Cytogenetics and wheat breeding. Contemp Agric 11–12:107–117

    Google Scholar 

  • Riley R, Chapman V, Johnson R (1968) Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217:383–384

    Google Scholar 

  • Schachermayr R, Siedler H, Gale MD, Winzeler H, Winzeler M, Keller B (1994) Identification and localization of molecular markers linked to Lr9 leaf rust resistance gene of wheat. Theor Appl Genet 88:110–115

    Google Scholar 

  • Schachtman D, Munns R, Whitecross M (1991) Variation in sodium exclusion and salt tolerance in Triticum tauschii. Crop Sci 31:992–997

    Article  CAS  Google Scholar 

  • Schachtman D, Lagudah E, Munns R (1992) The expression of salt tolerance from Triticum tauschii in hexaploid wheat. Theor Appl Genet 84:714–719

    CAS  PubMed  Google Scholar 

  • Schneider A, Linc G, Molnár I, Molnár-Láng M (2005) Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat—Aegilops biuncialis disomic addition lines. Genome 48(6):1070–1082

    Article  PubMed  Google Scholar 

  • Schwarzacher T, Jonsson KA, Harrison GE (1992) Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet 84:778–786

    CAS  PubMed  Google Scholar 

  • Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–22

    Google Scholar 

  • Sears ER (1961) Identification of the wheat chromosome carrying leaf rust resistance from Aegilops umbellulata. Wheat Inf Serv 12:12–13

    Google Scholar 

  • Sears ER (1972) Chromosome engineering in wheat. In: Stadler Symposia, vol 4. University of Missouri, Columbia, USA, pp 23–38

    Google Scholar 

  • Sears ER (1973) Agropyron-wheat transfers induced by homoeologous pairing. In: Sears ER, Sears ML (eds) Proceedings of 4th international wheat genetics symposium, University of Missouri, Colombia, MO, pp 191–199

    Google Scholar 

  • Sears ER (1981) Transfer of alien genetic material to wheat. In: Evans LT, Peacock WJ (eds) Wheat science-today and tomorrow. Cambridge University Press, Cambridge, pp 75–89

    Google Scholar 

  • Sharma HC, Gill BS (1983) Current status of wide hybridisation in wheat. Euphytica 32:17–31

    Article  Google Scholar 

  • Sharma D, Knott DR (1966) The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143

    Article  Google Scholar 

  • Sharma S, Xu S, Ehdaie B, Hoops A, Close JT, Lukaszewski JA, Waines JG (2011) Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theor Appl Genet 122:759–769

    Article  PubMed  PubMed Central  Google Scholar 

  • Shearman V, Sylvester-Bradley R, Scott R, Foulkes M (2005) Physiological processes associated with wheat yield progress in the UK. Crop Sci 45:175–185

    Google Scholar 

  • Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshall DS, Gill BS, Fritz A (2003) Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591

    Google Scholar 

  • Tahir R, Bux H, Kazi AG, Rasheed A, Napar AA, Ajmal SU, Mujeeb-Kazi A (2014) Evaluation of Pakistani elite wheat germplasm for T1BL.1RS chromosome translocation. J Agr Sci Tech 16:421–432

    CAS  Google Scholar 

  • Talbot SJ (2011) Introgression of genetic material from primary synthetic hexaploids into an Australian bread wheat (Triticum aestivum L.). School of Agriculture, Food and Wine, University of Adelaide

    Google Scholar 

  • Tiwari VK, Wang S, Sehgal S, Vrana J, Friebe B, Kubalakova M, Chhuneja P, Dolezel J, Akhunov E, Kalia B, Sabir J, Gill BS (2014) SNP Discovery for mapping alien introgressions in wheat. BMC Genomics 15:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Trethowan R, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265

    Article  Google Scholar 

  • Van Ginkel M, Ogbonnaya F (2007) Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crop Res 104:86–94

    Article  Google Scholar 

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae), vol 7. Wageningen Agriculture University papers, p 513

    Google Scholar 

  • Wang MC, Bohmann D, Jasper H (2005) JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121(1):115–125

    Article  CAS  PubMed  Google Scholar 

  • Yamamori M (1994) An N-band marker for gene Lrl8 for resistance to leaf rust in wheat. Theor Appl Genet 89:643–646

    Article  CAS  PubMed  Google Scholar 

  • Yang WY, Liu DL, Li J, Zhag LQ, Wei HT, HU XR, Zheng YL, Zou YC (2009) Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics 36:539–546

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, P.K. (2016). Use of Alien Genetic Variation for Wheat Improvement. In: Rajpal, V., Rao, S., Raina, S. (eds) Molecular Breeding for Sustainable Crop Improvement. Sustainable Development and Biodiversity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-27090-6_1

Download citation

Publish with us

Policies and ethics