Skip to main content

Minimal Immersions in Euclidean Space

  • Chapter
  • First Online:
Surfaces in Classical Geometries

Part of the book series: Universitext ((UTX))

  • 2400 Accesses

Abstract

This chapter gives a brief history of minimal immersions in Euclidean space. We present the calculation of the first variation of the area functional and we derive the Enneper–Weierstrass representation. Scherk’s surface is used to illustrate the problems that arise in integrating the Weierstrass forms. This integration problem is a simpler version of the monodromy problem encountered later in finding examples of CMC 1 immersions in hyperbolic geometry. We present results on complete minimal immersions with finite total curvature, which will be used in Chapter 14 to characterize minimal immersions in Euclidean space that smoothly extend to compact Will more immersions into Möbius space. The final section on minimal curves applies the method of moving frames to the nonintuitive setting of holomorphic curves in C 3 whose tangent vector is nonzero and isotropic at every point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbosa, J.L.M., Colares, A.G.: Minimal Surfaces in R 3. Lecture Notes in Mathematics, vol. 1195. Springer, Berlin (1986). Translated from the Portuguese

    Google Scholar 

  2. Bernstein, S.: Sur un théorèm de géométrie et ses applications aux équations aux dérivées partielles du type elliptique. Commun. de la Soc. Math. de Kharkov 2ème Sér. 15, 38–45 (1915–1917)

    Google Scholar 

  3. Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent. Math. 7, 243–268 (1969)

    Google Scholar 

  4. Catalan, E.C.: Sur les surfaces réglés dont l’aire est un minimum. J. Math. Pure Appl. 7, 203–211 (1842)

    Google Scholar 

  5. Cecil, T.E.: Lie Sphere Geometry: With Applications to Submanifolds. Universitext, 2nd edn. Springer, New York (2008).

    Google Scholar 

  6. Darboux, G.: Sur les surfaces isothermiques. Ann. Sci. Ècole Norm. Sup. 3, 491–508 (1899)

    MathSciNet  MATH  Google Scholar 

  7. Deutsch, M.B.: Equivariant deformations of horospherical surfaces. Ph.D. thesis, Washington University in St. Louis (2010)

    Google Scholar 

  8. do Carmo, M.P.: O método do referencial móvel. Instituto de Matemática Pura e Aplicada, Rio de Janeiro (1976)

    Google Scholar 

  9. do Carmo, M.P.: Riemannian Geometry. Mathematics: Theory and Applications. Birkhäuser, Boston (1992). Translated from the second Portuguese edition by Francis Flaherty

    Google Scholar 

  10. Enneper, A.: Analytisch-geometrische Untersuchungen. Z. Math. Phys. IX, 107 (1864)

    Google Scholar 

  11. Fujimoto, H.: On the number of exceptional values of the Gauss maps of minimal surfaces. J. Math. Soc. Jpn. 40(2), 235–247 (1988). doi:10.2969/jmsj/04020235. http://www.dx.doi.org.libproxy.wustl.edu/10.2969/jmsj/04020235

    Google Scholar 

  12. Goursat, E.: Sur un mode de transformation des surfaces minima. Acta Math. 11(1–4), 135–186 (1887). doi:10.1007/BF02418047. http://www.dx.doi.org/10.1007/BF02418047

    Google Scholar 

  13. Goursat, E.: Sur un mode de transformation des surfaces minima. Acta Math. 11(1–4), 257–264 (1887). doi:10.1007/BF02418050. http://www.dx.doi.org/10.1007/BF02418050. Second Mémoire

    Google Scholar 

  14. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  15. Helgason, S.: Differential Geometry and Symmetric Spaces. Pure and Applied Mathematics, vol. XII. Academic, New York (1962)

    Google Scholar 

  16. Hoffman, D., Karcher, H.: Complete embedded minimal surfaces of finite total curvature. In: Geometry, V. Encyclopedia of Mathematical Science, vol. 90, pp. 5–93, 267–272. Springer, Berlin (1997)

    Google Scholar 

  17. Hoffman, D.A., Meeks III, W.: A complete embedded minimal surface in R 3 with genus one and three ends. J. Differ. Geom. 21(1), 109–127 (1985). http://projecteuclid.org/getRecord?id=euclid.jdg/1214439467

  18. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol I. Interscience/A Division of John Wiley & Sons, New York/London (1963)

    MATH  Google Scholar 

  19. Krantz, S.G.: Complex Analysis: The Geometric Viewpoint. Carus Mathematical Monographs, vol. 23. Mathematical Association of America, Washington, DC (1990)

    Google Scholar 

  20. Lagrange, J.L.: Œuvres de Lagrange. Gauthier-Villars, Paris (1867–92). Vol. 1–14, publiées par les soins de m. J.-A. Serret, sous les auspices de Son Excellence le ministre de l’instruction publique

    Google Scholar 

  21. Lawson, H.B.: Lectures on Minimal Submanifolds, vol. I. Publish or Perish, Berkeley (1980)

    MATH  Google Scholar 

  22. Lawson Jr., H.B.: Complete minimal surfaces in S 3. Ann. Math. (2) 92, 335–374 (1970)

    Google Scholar 

  23. Marsden, J.E.: Basic Complex Analysis. W.H. Freeman, San Francisco (1973)

    MATH  Google Scholar 

  24. Meusnier, J.B.M.C.: Mémoire sur la courbure des surfaces. Mémoires présentés par div. Etrangers. Acad. Sci. Paris 10, 477–510 (1785)

    Google Scholar 

  25. Mo, X., Osserman, R.: On the Gauss map and total curvature of complete minimal surfaces and an extension of Fujimoto’s theorem. J. Differ. Geom. 31(2), 343–355 (1990). http://projecteuclid.org/getRecord?id=euclid.jdg/1214444316

    Google Scholar 

  26. Osserman, R.: Proof of a conjecture of Nirenberg. Commun. Pure Appl. Math. 12, 229–232 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  27. Osserman, R.: Minimal surfaces in the large. Comment. Math. Helv. 35, 65–76 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  28. Osserman, R.: Global properties of minimal surfaces in E 3 and E n. Ann. Math. (2) 80, 340–364 (1964)

    Google Scholar 

  29. Osserman, R.: Global properties of classical minimal surfaces. Duke Math. J. 32, 565–573 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. Osserman, R.: A Survey of Minimal Surfaces, 2nd edn. Dover, New York (1986)

    MATH  Google Scholar 

  31. Ricci-Curbastro, G.: Sulla teoria intrinseca delle superficie ed in ispecie di quelle di secondo grado. Atti R. Ist. Ven. di Lett. ed Arti 6, 445–488 (1895)

    MATH  Google Scholar 

  32. Ros, A.: The Gauss map of minimal surfaces. In: Differential Geometry, Valencia, 2001, pp. 235–252. World Science, River Edge (2002)

    Google Scholar 

  33. Scherk, H.F.: De proprietatibus superficiei quae hac continetur aequatione (1 + q 2)r − 2pqs + (1 + p 2)t = 0 disquisitiones analyticae. Acta Societatis JablonovianœTome IV, 204–280 (1831)

    Google Scholar 

  34. Scherk, H.F.: Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen. J. Reine Angew. Math. 13, 185–208 (1835). doi:10.1515/crll.1835.13.185. http://dx.doi.org/10.1515/crll.1835.13.185

    Google Scholar 

  35. Schwarz, H.A.: Gesammelte Mathematische Abhandlungen, I. Springer, Berlin (1890)

    Book  MATH  Google Scholar 

  36. Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. 88, 62–105 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  37. Voss, K.: Uber vollständige Minimalflächen. L’Enseignement Math. 10, 316–317 (1964)

    Google Scholar 

  38. Weber, M.: Classical minimal surfaces in Euclidean space by examples: geometric and computational aspects of the Weierstrass representation. In: Global Theory of Minimal Surfaces. Clay Mathematics Proceedings, vol. 2, pp. 19–63. American Mathematical Society, Providence (2005)

    Google Scholar 

  39. Weierstrass, K.: Über eine besondere Gattung von Minimalflächen. Mathematische Werke, vol. 3, pp. 241–247. Mayer & Müller, Berlin (1903)

    Google Scholar 

  40. Weierstrass, K.: Untersuchungen über die Flächen, deren mittlere Krümmung überall gleich Null ist. Mathematische Werke, vol. 3, pp. 39–52. Mayer & Müller, Berlin (1903)

    Google Scholar 

  41. Xavier, F.: The Gauss map of a complete non-flat minimal surface cannot omit 7 points on the sphere. Ann. Math. 113, 211–214 (1981). Erratum, Ann. Math. 115, 667 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jensen, G.R., Musso, E., Nicolodi, L. (2016). Minimal Immersions in Euclidean Space. In: Surfaces in Classical Geometries. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-27076-0_8

Download citation

Publish with us

Policies and ethics