Skip to main content

Complex Structure

  • Chapter
  • First Online:
Surfaces in Classical Geometries

Part of the book series: Universitext ((UTX))

  • 2414 Accesses

Abstract

This chapter reviews complex structures on a manifold, then gives an elementary exposition of the complex structure induced on a surface by a Riemannian metric. In this way a complex structure is induced on any surface immersed into one of the space forms. Surfaces immersed into Möbius space inherit a complex structure. In all cases we use this structure to define a reduction of a moving frame to a unique frame associated to a given complex coordinate. Umbilic points do not hinder the existence of these frames, in contrast to the obstruction they can pose for the existence of second order frame fields. The Hopf invariant and the Hopf quadratic differential play a prominent role in the space forms as well as in Möbius geometry. Using the structure equations of the Hopf invariant h, the conformal factor e u, and the mean curvature H of such frames, we give an elementary description of the Lawson correspondence between minimal surfaces in Euclidean geometry and constant mean curvature equal to one (CMC 1) surfaces in hyperbolic geometry; and between minimal surfaces in spherical geometry and CMC surfaces in Euclidean geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlfors, L.V.: Complex analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable. McGraw-Hill, New York/Toronto/London (1953)

    MATH  Google Scholar 

  2. Bers, L.: Riemann Surfaces. Mimeographed Lecture Notes, New York University (1957–1958). Notes by Richard Pollack and James Radlow

    Google Scholar 

  3. Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edn. Academic, New York (1986)

    MATH  Google Scholar 

  4. Boy, W.: Über die Curvatura integra und die Topologie geschlossener Flächen. Math. Ann. 57(2), 151–184 (1903). doi:10.1007/BF01444342. http://www.dx.doi.org/10.1007/BF01444342

  5. Chern, S.S.: Deformation of surfaces preserving principal curvatures. In: Chavel, I., Farkas, H. (eds.) Differential Geometry and Complex Analysis: A Volume Dedicated to the Memory of Harry Ernest Rauch, pp. 155–163. Springer, Berlin (1985)

    Chapter  Google Scholar 

  6. Chern, S.S.: Complex Manifolds Without Potential Theory (With an Appendix on the Geometry of Characteristic Classes). Universitext, 2nd edn. Springer, New York (1995).

    Google Scholar 

  7. Christoffel, E.B.: Über einige allgemeine Eigenschaften der Minimumsflächen. J. Reine Angew. Math. 67, 218–228 (1867)

    Article  MathSciNet  Google Scholar 

  8. Fubini, G.: Sulle metriche definite da una forma hermitiana. Atti Istit. Veneto 6, 501–513 (1903)

    Google Scholar 

  9. Gauss, C.F.: General Investigations of Curved Surfaces. Raven Press, Hewlett (1965)

    MATH  Google Scholar 

  10. Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination. Chelsea, New York (1952). Translated by P. Neményi

    Google Scholar 

  11. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Vol. II. Interscience Tracts in Pure and Applied Mathematics, vol. 15. Interscience/Wiley, New York/London/Sydney (1969)

    Google Scholar 

  12. Korn, A.: Zwei Anwendungen der Methode der sukzessiven Annäherungen. In: H.A. Schwarz (ed.) Gesammelte Mathematische Abhandlungen, I, pp. 215–229. Springer, Berlin (1890)

    Google Scholar 

  13. Lichtenstein, L.: Zur Theorie der konformen Abbildung: Konforme Abbildung nichtanalytischer, singularitätenfreier Flächenstücke auf ebene Gebiete. Bull. Int. de L’Acad. Sci. Cracovie, ser. A pp. 192–217 (1916)

    Google Scholar 

  14. Lima, E.L.: Orientability of smooth hypersurfaces and the Jordan-Brouwer separation theorem. Expo. Math. 5(3), 283–286 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Newlander, A., Nirenberg, L.: Complex analytic coordinates in almost complex manifolds. Ann. Math. (2) 65, 391–404 (1957)

    Google Scholar 

  16. Ruh, E., Vilms, J.: The tension field of the Gauss map. Trans. Am. Math. Soc. 149, 569–573 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Study, E.: Kürzeste Wege im komplexen Gebiet. Math. Ann. 60(3), 321–378 (1905). doi:10.1007/BF01457616. http://www.dx.doi.org.libproxy.wustl.edu/10.1007/BF01457616

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jensen, G.R., Musso, E., Nicolodi, L. (2016). Complex Structure. In: Surfaces in Classical Geometries. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-27076-0_7

Download citation

Publish with us

Policies and ethics