Skip to main content

Lie Sphere Geometry

  • Chapter
  • First Online:
Surfaces in Classical Geometries

Part of the book series: Universitext ((UTX))

  • 2410 Accesses

Abstract

This chapter presents the method of moving frames in Lie sphere geometry. This involves a number of new ideas, beginning with the fact that some Lie sphere transformations are not diffeomorphisms of space S 3, but rather of the unit tangent bundle of S 3. This we identify with the set of pencils of oriented spheres in S 3, which is identified with the set \( \varLambda \) of all lines in the quadric hypersurface \( Q \subset \mathbf{P}(\mathbf{R}^{4,2}) \). The set \( \varLambda \) is a five-dimensional subspace of the Grassmannian G(2, 6). The Lie sphere transformations are the projective transformations of P(R 4, 2) that send Q to Q. This is a Lie group acting transitively on \( \varLambda \). The Lie sphere transformations taking points of S 3 to points of S 3 are exactly the Möbius transformations, which form a proper subgroup of the Lie sphere group. In particular, the isometry groups of the space forms are natural subgroups of the Lie sphere group. There is a contact structure on \( \varLambda \) invariant under the Lie sphere group. A surface immersed in a space form with a unit normal vector field has an equivariant Legendre lift into \( \varLambda \). A surface conformally immersed into Möbius space with an oriented tangent sphere map has an equivariant Legendre lift into \( \varLambda \). This chapter studies Legendre immersions of surfaces into this homogeneous space \( \varLambda \) under the action of the Lie sphere group. A major application is a proof that all Dupin immersions of surfaces in a space form are Lie sphere congruent to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. III: Differentialgeometrie der Kreise und Kugeln. In: Grundlehren der mathematischen Wissenschaften, vol. 29. Springer, Berlin (1929)

    Google Scholar 

  2. Cecil, T.E., Jensen, G.R.: Dupin hypersurfaces with three principal curvatures. Invent. Math. 132(1), 121–178 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cecil, T.E., Jensen, G.R.: Dupin hypersurfaces with four principal curvatures. Geom. Dedicata 79(1), 1–49 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cecil, T.E., Ryan, P.J.: Tight and Taut Immersions of Manifolds. Research Notes in Mathematics, vol. 107. Pitman (Advanced Publishing Program), Boston (1985)

    Google Scholar 

  5. Cecil, T.E., Chi, Q.S., Jensen, G.R.: Dupin hypersurfaces with four principal curvatures. II. Geom. Dedicata 128, 55–95 (2007). doi:10.1007/s10711-007-9183-3. http://dx.doi.org/10.1007/s10711-007-9183-3

    Google Scholar 

  6. Chern, S.S.: On the minimal immersions of the two-sphere in a space of constant curvature. In: Problems in Analysis (Lectures at the Symposium in Honor of Salomon Bochner. Princeton University, Princeton, NJ (1969)), pp. 27–40. Princeton University Press, Princeton (1970)

    Google Scholar 

  7. Ferapontov, E.V.: Lie sphere geometry and integrable systems. Tohoku Math. J. (2) 52(2), 199–233 (2000)

    Google Scholar 

  8. Lie, S.: Ueber Complexe, insbesondere Linien- und Kugel-Complexe, mit Anwendung auf die Theorie partieller Differential-Gleichungen. Math. Ann. 5(1), 145–208 (1872). doi:10.1007/BF01446331. http://www.dx.doi.org.libproxy.wustl.edu/10.1007/BF01446331. Ges. Abh. 2, 1–121

    Google Scholar 

  9. Pinkall, U.: Dupin hypersurfaces. Math. Ann. 270, 427–440 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jensen, G.R., Musso, E., Nicolodi, L. (2016). Lie Sphere Geometry. In: Surfaces in Classical Geometries. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-27076-0_15

Download citation

Publish with us

Policies and ethics