Skip to main content

Isothermic Immersions into Möbius Space

  • Chapter
  • First Online:
Surfaces in Classical Geometries

Part of the book series: Universitext ((UTX))

  • 2392 Accesses

Abstract

An isothermic immersion of a surface in a space form, which is then embedded equivariantly into Möbius space, becomes an isothermic immersion of a surface in Möbius space. Thus, an isothermic immersion in a space form remains isothermic under conformal transformations. An isothermic immersion into Möbius space is special if it comes from a CMC immersion into a space form. By a theorem of Voss, the Bryant quartic differential form of an umbilic free conformal immersion into Möbius space is holomorphic if and only if it is Willmore or special isothermic. A minimal immersion into a space form followed by the equivariant embedding of the space form into Möbius space becomes a Willmore immersion into Möbius space. Moreover, it is isothermic, with isolated umbilics, since this is true for minimal immersions in space forms and these properties are preserved by the embeddings into Möbius space. The theorem of Thomsen states that up to Möbius transformation, all isothermic Willmore immersions with isolated umbilics arise in this way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bianchi, L.: Complementi alle ricerche sulle superficie isoterme. Ann. Mat. Pura Appl. 12, 19–54 (1905)

    Article  MATH  Google Scholar 

  2. Bianchi, L.: Ricerche sulle superficie isoterme e sulla deformazione delle quadriche. Ann. Mat. Pura Appl. 11, 93–157 (1905)

    Article  MATH  Google Scholar 

  3. Bohle, C.: Constant mean curvature tori as stationary solutions to the Davey-Stewartson equation. Math. Z. 271(1–2), 489–498 (2012). doi:10.1007/s00209-011-0873-z. http://www.dx.doi.org/10.1007/s00209-011-0873-z

    Google Scholar 

  4. Bohle, C., Peters, G.P.: Bryant surfaces with smooth ends. Commun. Anal. Geom. 17(4), 587–619 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brück, M., Du, X., Park, J., Terng, C.L.: The submanifold geometries associated to Grassmannian systems. Mem. Am. Math. Soc. 155(735), viii+95 (2002). doi:10.1090/memo/0735. http://www.dx.doi.org.libproxy.wustl.edu/10.1090/memo/0735

    Google Scholar 

  6. Bryant, R.L.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–54 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Bryant, R.L., Kusner, R.: Parametrization of Boy’s surface that makes it a Willmore immersion. https://en.wikipedia.org/wiki/Robert_Bryant_(mathematician)

  8. Burstall, F.E.: Isothermic surfaces: conformal geometry, Clifford algebras and integrable systems. In: Integrable Systems, Geometry, and Topology. AMS/IP Studies in Advanced Mathematics, vol. 36, pp. 1–82. American Mathematical Society, Providence (2006)

    Google Scholar 

  9. Burstall, F.E., Hertrich-Jeromin, U., Pedit, F., Pinkall, U.: Curved flats and isothermic surfaces. Math. Z. 225(2), 199–209 (1997). doi:10.1007/PL00004308. http://www.dx.doi.org.libproxy.wustl.edu/10.1007/PL00004308

    Google Scholar 

  10. Burstall, F.E., Pedit, F., Pinkall, U.: Schwarzian derivatives and flows of surfaces. In: Differential Geometry and Integrable Systems (Tokyo, 2000). Contemporary Mathematics, vol. 308, pp. 39–61. American Mathematical Society, Providence (2002)

    Google Scholar 

  11. Calapso, P.: Sulle superficie a linee di curvatura isoterme. Rend. Circ. Mat. Palermo 17, 273–286 (1903)

    Article  MATH  Google Scholar 

  12. Calapso, P.: Sulle trnsformazioni delle superficie isoterme. Ann. Mat. Pura Appl. 24, 11–48 (1915)

    Article  MATH  Google Scholar 

  13. Conlon, L.: Differentiable Manifolds. Birkhäuser Advanced Texts: Basler Lehrbücher (Birkhäuser Advanced Texts: Basel Textbooks), 2nd edn. Birkhäuser, Boston (2001). doi:10.1007/978-0-8176-4767-4. http://www.dx.doi.org/10.1007/978-0-8176-4767-4

    Google Scholar 

  14. Costa, C.J.: Example of a complete minimal immersion in R 3 of genus one and three embedded ends. Bol. Soc. Brasil. Mat. 15(1–2), 47–54 (1984). doi:10.1007/BF02584707. http://www.dx.doi.org.libproxy.wustl.edu/10.1007/BF02584707

    Google Scholar 

  15. Darboux, G.: Sur les surfaces isothermiques. C. R. Acad. Sci. Paris 128, 1299–1305 (1899)

    MathSciNet  MATH  Google Scholar 

  16. Darboux, G.: Sur une classe des surfaces isothermiques liées à la deformations des surfaces du second degré. C. R. Acad. Sci. Paris 128, 1483–1487 (1899)

    MATH  Google Scholar 

  17. Delaunay, C.: Sur la surface de révolution dont la courbure moyenne est constante. J. Math. Pures Appl. Sér. 1 6, 309–320 (1841)

    Google Scholar 

  18. Ferus, D., Pedit, F.: Curved flats in symmetric spaces. Manuscripta Math. 91(4), 445–454 (1996). doi:10.1007/BF02567965. http://www.dx.doi.org.libproxy.wustl.edu/10.1007/BF02567965

    Google Scholar 

  19. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  20. Hertrich-Jeromin, U.: Introduction to Möbius Differential Geometry. London Mathematical Society Lecture Note Series, vol. 300. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  21. Hertrich-Jeromin, U., Musso, E., Nicolodi, L.: Möbius geometry of surfaces of constant mean curvature 1 in hyperbolic space. Ann. Glob. Anal. Geom. 19(2), 185–205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218. Springer, New York (2003)

    Google Scholar 

  23. Rothe, R.: Untersuchungen über die Theorie der isothermen Flächen. Berlin thesis, Mayer und Müller, Berlin (1897)

    MATH  Google Scholar 

  24. Terng, C.L., Uhlenbeck, K.: Bäcklund transformations and loop group actions. Commun. Pure Appl. Math. 53(1), 1–75 (2000). doi:10.1002/(SICI)1097-0312(200001)53:1<1::AID-CPA1>3.3.CO;2-L. http://www.dx.doi.org.libproxy.wustl.edu/10.1002/(SICI)1097-0312(200001)53:1<1::AID-CPA1>3.3.CO;2-L

    Google Scholar 

  25. Thomsen, G.: Über konforme Geometrie I: Grundlagen der konformen Flächentheorie. Abh. Math. Sem. Hamburg 3, 31–56 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  26. Voss, K.: Verallgemeinerte Willmore-Flächen. Tech. Rep., Mathematisches Forschungsinstitut Oberwolfach Workshop Report 1985, vol. 42 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jensen, G.R., Musso, E., Nicolodi, L. (2016). Isothermic Immersions into Möbius Space. In: Surfaces in Classical Geometries. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-27076-0_14

Download citation

Publish with us

Policies and ethics