Skip to main content

Möbius Geometry

  • Chapter
  • First Online:
Surfaces in Classical Geometries

Part of the book series: Universitext ((UTX))

  • 2441 Accesses

Abstract

This chapter introduces conformal geometry and Liouville’s characterization of conformal transformations of Euclidean space. Through stereographic projection these are all globally defined conformal transformations of the sphere S 3. The Möbius group \(\mathbf{M\ddot{o}b}\) is the group of all conformal transformations of S 3. It is a ten dimensional Lie group containing the group of isometries of each of the space forms as a subgroup. Möbius space \(\mathcal{M}\) is the homogeneous space consisting of the sphere S 3 acted upon by \(\mathbf{M\ddot{o}b}\). \(\mathcal{M}\) has a conformal structure invariant under the action of \(\mathbf{M\ddot{o}b}\). The reduction procedure is applied to Möbius frames. The space forms are each equivariantly embedded into Möbius geometry. Conformally invariant properties, such as Willmore immersion, or isothermic immersion, or Dupin immersion, have characterizations in terms of the Möbius invariants. Oriented spheres in Möbius space provide the appropriate geometric interpretation of the vectors of a frame field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernstein, H.: Non-special, non-canal isothermic tori with spherical lines of curvature. Trans. Am. Math. Soc. 353(6), 2245–2274 (electronic) (2001). doi:10.1090/S0002-9947-00-02691-X. http://www.dx.doi.org/10.1090/S0002-9947-00-02691-X

    Google Scholar 

  2. Bryant, R.L.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–54 (1984)

    MathSciNet  MATH  Google Scholar 

  3. Cartan, E.: Sur les couples de surfaces applicables avec conservation des courbures principales. Bull. Sci. Math. 66, 55–85 (1942). Oeuvres Complète, Partie III, vol. 2, pp. 1591–1620

    Google Scholar 

  4. Chern, S.S.: An elementary proof of the existence of isothermal parameters on a surface. Proc. Am. Math. Soc. 6, 771–782 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry—Methods and Applications, Part I. Graduate Texts in Mathematics, vol. 93. Springer, New York (1984). The Geometry of Surfaces, Transformation Groups, and Fields. Translated from the Russian by Robert G. Burns

    Google Scholar 

  6. Greenberg, M.J.: Euclidean and Non-Euclidean Geometries: Development and History, 3rd edn. W.H. Freeman, New York (1993).

    MATH  Google Scholar 

  7. Helgason, S.: Differential Geometry and Symmetric Spaces. Pure and Applied Mathematics, vol. XII. Academic, New York (1962)

    Google Scholar 

  8. Monge, G.: Applications de l’Analyse à la Géométrie, 5ème edn. Bachelier, Paris (1849). Rev., corr. et annotée par M. Liouville

    Google Scholar 

  9. Musso, E., Nicolodi, L.: Willmore canal surfaces in Euclidean space. Rend. Istit. Mat. Univ. Trieste 31(1–2), 177–202 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Musso, E., Nicolodi, L.: Darboux transforms of Dupin surfaces. In: PDEs, Submanifolds and Affine Differential Geometry (Warsaw, 2000), vol. 57, pp. 135–154. Banach Center/Polish Academy of Sciences, Warsaw (2002)

    Google Scholar 

  11. Sulanke, R.: Möbius geometry. V. Homogeneous surfaces in the Möbius space S 3. In: Topics in Differential Geometry, vol. I, II (Debrecen, 1984). Mathematical Society János Bolyai, vol. 46, pp. 1141–1154. North-Holland, Amsterdam (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jensen, G.R., Musso, E., Nicolodi, L. (2016). Möbius Geometry. In: Surfaces in Classical Geometries. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-27076-0_12

Download citation

Publish with us

Policies and ethics