Skip to main content

Segmentation of Carbon Nanotube Images Through an Artificial Neural Network

  • Conference paper
  • First Online:
Advances in Artificial Intelligence and Soft Computing (MICAI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9413))

Included in the following conference series:

Abstract

The segmentation of nanotube is an important task for Nanotechnology. The performance of segmentation stage determines the accuracy of the measurement process of nanotube when assessing the quality of nanomaterials. In this work we propose two algorithms for segmenting carbon nanotube images. The first one uses a matched filter bank in the preprocessing step and a neural network for segmenting images from Scanning Electron Microscopy. The second algorithm includes the Perona-Malik filter for enhancing the nanotube information. The segmentation phase is composed by the relaxed Otsu’s threshold and an artificial neural network. This algorithm is applied on images from Transmission Electron Microscopy. After the segmentation, for both algorithms, a preprocessing based on mathematical morphology is carried out. The performance of the proposed algorithms is numerically evaluated by using real image databases. Overall accuracy of 92.74 % and 73.99 % were obtained for the first and second algorithm respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The images used in this project were provided by Research and Development of Nanomaterials, SA CV RENIECYT 17567 (National Registry of Scientific and Technological Institutions and Enterprises CONACYT), through MsC. Daniel Ramirez Gonzalez and funded by the PROMEP/103.5/11/6834 project.

References

  1. Batenburg, K.J., Sijbers, J.: Adaptive thresholding of tomograms by projection distance minimization. Pattern Recogn. 42(10), 2297–2305 (2009)

    Article  MATH  Google Scholar 

  2. Bates, D.M., Watts, D.G.: Nonlinear regression: iterative estimation and linear approximations. Wiley Online Library (1988)

    Google Scholar 

  3. Chaku, P., Shah, P., Bakshi, S.: A digital image processing algorithm for automation of human karyotyping. Int. J. Comput. Sci. Commun. (IJCSC) 5(1), 54–56 (2014)

    Google Scholar 

  4. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. EEE Trans. Med. Imaging 8(3), 263–269 (1989)

    Article  Google Scholar 

  5. Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30, 9–15 (2006)

    Article  Google Scholar 

  6. Dalmau, O., Alarcon, T.: MFCA: matched filters with cellular automata for retinal vessel detection. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part I. LNCS, vol. 7094, pp. 504–514. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Gao, Y., Li, Z., Lin, Z., Zhu, L., Tannenbaum, A., Bouix, S., Wong, C.: Automated dispersion and orientation analysis for carbon nanotube reinforced polymer composites. Nanatechnol. 23(43), 435706 (2012)

    Article  Google Scholar 

  8. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions and bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (2004)

    Google Scholar 

  9. Gill, P.R., Murray, W., Wright, M.H.: The Levenberg-Marquardt Method. Academic Press, Practical Optimization, London (1981)

    Google Scholar 

  10. Gonzalez, R., Woods, R.: Digital image processing. Pearson/Prentice Hall, Upper Saddle River (2008). http://books.google.com.mx/books?id=8uGOnjRGEzoC

  11. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  12. de Jesús Guerrero, J., Dalmau, O., Alarcón, T.E., Zamudio, A.: Frequency filter bank for enhancing carbon nanotube images. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds.) MICAI 2014, Part I. LNCS, vol. 8856, pp. 316–326. Springer, Heidelberg (2014)

    Google Scholar 

  13. Levenberg, K.: A method for the solution of certain problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)

    MATH  MathSciNet  Google Scholar 

  14. Lindeberg, T., Li, M.X.: Segmentation and classification of edges using minimum description length approximation and complementary junction cues. Comput. Vis. Image Underst. 67, 88–98 (1997)

    Article  Google Scholar 

  15. Nock, R., Nielsen, F.: Statistical region merging. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1452–1458 (2004)

    Article  Google Scholar 

  16. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. SMC–9(1), 62–66 (1979)

    MathSciNet  Google Scholar 

  17. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  18. Rajaraman, S., Vaidyanathan, G., Chokkalingam, A.: Segmentation and removal of interphase cells from chromosome images using multidirectional block ranking. Int. J. Bio-sci. Bio-Technol. 5(3), 79–91 (2013)

    Google Scholar 

  19. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice-Hall, Upper Saddle River (2001)

    Google Scholar 

  20. Torres, A.D.: Procesamiento digital de imgenes. Perfiles Educativos, pp. 1–15, abril-junio 1996

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Project PROMEP/103.5/11/6834.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Celeste Ramírez Trujillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Trujillo, M.C.R., Alarcón, T.E., Dalmau, O.S., Ojeda, A.Z. (2015). Segmentation of Carbon Nanotube Images Through an Artificial Neural Network. In: Sidorov, G., Galicia-Haro, S. (eds) Advances in Artificial Intelligence and Soft Computing. MICAI 2015. Lecture Notes in Computer Science(), vol 9413. Springer, Cham. https://doi.org/10.1007/978-3-319-27060-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27060-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27059-3

  • Online ISBN: 978-3-319-27060-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics