Skip to main content

Design of Limaçon Gas Expanders

  • Chapter
  • First Online:

Abstract

Limaçon is a simple and yet reliable technology, which can be employed to manufacture gas expanders to extract work or electrical power from low-grade heat or solar power resources; Limaçon technology can also be applied to small-scale power generation applications or can be used to improve energy efficiency of existing processes. Sultan (Journal of Mechanical Design, 787–793, 2006) and Sultan and Schaller (Journal of Engineering for Gas Turbines and Power, 2011) have come up with an optimum design of Limaçon-to-Limaçon expanders based on their thermodynamics performance; the design presented a model to calculate the cross-sectional area as well as the velocity of fluid flow through the inlet and discharge ports. However, the problem of optimum geometric characteristics of the inlet and discharge manifolds and the best parameters of various Limaçon embodiments are left to be solved. Additionally, the effect of the phase change on the expander performance is yet to be investigated. Aim of this document is to provide the framework of the Limaçon machines to achieve optimum expander geometries for power generation systems with various types of working fluids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aoun, B. (2010). Micro combined heat and power operating on renewable energy for residential building. Paris.

    Google Scholar 

  • Banerjee, S., & Chan, A. M. (1980). Separated flow models – I analysis of the averaged and local instantaneous formulations. International Journal of Multiphase Flow, 1–24.

    Google Scholar 

  • Bowman, J. L. (1983). Patent No. 4,412,796. United States.

    Google Scholar 

  • Canada, S., Cohen, G., Cable, R., Brosseau, D., & Price, H. (2005). Parabolic trough organic—Rankine cycle solar power plant. Colorado: National Renewable Energy Laboratory.

    Google Scholar 

  • Chen, H., Goswami, D. Y., & Stefanakos, E. K. (2010). A review of thermodynamic cycles and working fluids for the conversion of. Renewable and Sustainable Energy Reviews, 14, 3059--3067.

    Google Scholar 

  • Chen, Y., Lundqvist, P., Johanson, A., & Platell, P. (2006). A comparative study of the carbon dioxide transcritical power cycle compared with an organic Rankine cycle with R123 as working fluid in waste heat recovery. Applied Thermal Engineering, 2142–2147.

    Google Scholar 

  • DiPippo, R. (2007). Ideal thermal efficiency for geothermal binary plants. Geothermics, 276–285.

    Google Scholar 

  • Duke, N. S. (1997). Patent No. 6,250,262.

    Google Scholar 

  • Fairhurst, C. (1983). Component pressure loss during two-phase flow. Papers presented at International Conference on the Physical Modelling of Multi-Phase Flow, 1–24.

    Google Scholar 

  • Feyens, F. (1927). Patent No. 1,802,887. US.

    Google Scholar 

  • Fischer, J. (2011). Comparison of trilateral cycles and organic Rankine cycles. Energy, 6208–6219.

    Google Scholar 

  • Frager, M., & Menard, H. (1954). Patent No. 3,029,741. US.

    Google Scholar 

  • Fukuta, M., & Yanagisawa, T. (2009). Performance of vane-type CO2 expander and characteristic of transcritical expansion process. HVAC&R Research, 711–727.

    Google Scholar 

  • Gao, H., Liu, C., He, C., Xu, X., Wu, S., & Li, Y. (2012). Performance analysis and working fluid selection of a supercritical organic Rankine cycle for low grade waste heat recovery. Energies, 3233–3247.

    Google Scholar 

  • Ghosh, S. K., Seshaiah, N., Sahoo, R. K., & Sarangi, S. K. (2005). Designs of turboexpander for cryogenic applications. Indian Journal of Cryogenics.

    Google Scholar 

  • Gimstedt, L. J. (1979). Patent No. F02G 1/04. International.

    Google Scholar 

  • Glavatskaya, Y., Podevin, P., Lemort, V., Shonda, O., & Descombes, G. (2012). Reciprocating expander for an exhaust heat recovery Rankine cycle for passenger car application. Energies, 1751–1765.

    Google Scholar 

  • Gridin, V. B., & Mirkin, A. Z. (1971). Study of operating processes of reciprocating expanders. Plenum Publishing Corporation, 19–21.

    Google Scholar 

  • Grip, R. L. (2009). A mechanical model of an axial piston machine. Stockholm: Royal Institute of Technology.

    Google Scholar 

  • Guo, C., Du, X., Yang, L., & Yang, Y. (2014). Organic Rankine cycle for power recovery of exhaust flue gas. Applied Thermal Engineering.

    Google Scholar 

  • Hou, Y., Zhu, Z. H., & Chen, C. Z. (2004). Comparative test on two kinds of new compliant foil bearing for small cryogenic turbo-expander. Cryogenics, 69–72.

    Google Scholar 

  • House, P. A. (1976). Helical-rotor expander application for geothermal energy conversion. Livermore, CA: Lawrence Livermore Laboratory.

    Google Scholar 

  • Hung, T. C., Shai, T. Y., & Wang, S. K. (1997). A review of organic Rankine cycle (ORCs) for the recovery of low-grade waste heat. Energy, 661–667.

    Google Scholar 

  • Iaccarino, G., Ooi, A., Durbin, P.A. & Behnia, M. (2003). Reynolds averaged simulation of unsteady separated flow. International Journal of Heat and Fluid Flow, 147–156.

    Google Scholar 

  • Jia, X., Zhang, B., Pu, L., Guo, B., & Peng, X. (2010). Improved rotary vane expander for trans-critical CO2 cycle by introducing high-pressure gas into the vane slots. International Journal of Refrigeration, 732–741.

    Google Scholar 

  • Jia, X., Zhang, B., Yang, B., & Peng, X. (2009). Study of a rotary vane expander for the transcritical CO2 cycle—Part II: Theoretical modelling. HVAC&R Research, 689–709.

    Google Scholar 

  • Kawahara, A., Chung, P.-Y., & Kawaji, M. (2002). Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel. International Journal of Multiphase Flow, 1411–1435.

    Google Scholar 

  • Kucerija. (1991). Patent No. 5,003,782. United States.

    Google Scholar 

  • Lemort, V., Lebrun, J., & Quoilin, S. (2010). Experimental study and modeling of an Organic Rankine Cycle using scroll expander. Applied Energy, 1260–1268.

    Google Scholar 

  • Lemort, V., Quoilin, S., Cuevas, C., & Lebrun, J. (2009). Testing and modeling a scroll expander integrated into an Organic Rankine Cycle. Applied Thermal Engineering, 3094–3102.

    Google Scholar 

  • Li, M., Ma, Y., & Tian, H. (2009). A rolling piston-type two-phase expander in the transcritical CO2 cycle. HVAC&R Research, 729–741.

    Google Scholar 

  • Lockhart, R. W., & Martinelli, R. (1949). Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chemical Engineering Process, 39–48.

    Google Scholar 

  • Mazda Motor Corporation. (2014, July 15). What is the Rotary Engine? Retrieved from www.mazda.com: http://www.mazda.com/stories/rotary/about/

  • McClure, A. W. (1950). Patent No. 2,529,880. United States.

    Google Scholar 

  • McQuillan, K. W., & Whalley, P. B. (1985). Flow patterns in vertical two-phase flow. International Journal of Multiphase Flow, 161–175.

    Google Scholar 

  • Persson, J.-G. (1990). Performance evaluation of fluid machinery during conceptual design. Annals of the ClRP, 137–140.

    Google Scholar 

  • Peterson, R. B., Wang, H., & Herron, T. (2008). Performance of a small-scale regenerative Rankine power cycle employing a scroll expander. Journal of Power and Energy, 217–282.

    Google Scholar 

  • Phung, T. H., & Sultan, I. A. (n.d.). On the design of the Limaçon-to-circular fluid processing machines.

    Google Scholar 

  • Planche, B. R. (1920). Patent No. 1,340,625. US.

    Google Scholar 

  • Qiu, G., Liu, H., & Riffat, S. (2011). Expanders for micro-CHP systems with organic Rankine cycle. Applied Thermal Engineering, 3301–3307.

    Google Scholar 

  • Quoilin, S., Aumann, R., Grill, A., Schuster, A., Lemort, V., & Spliethoff, H. (2011). Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles. Applied Energy, 2183–2190.

    Google Scholar 

  • Shin, B. R., Iwata, Y., & Ikohagi, T. (2003). Numerical simulation of unsteady cavitating flows using a homogenous equilibrium model. Computational Mechanics, 388–395.

    Google Scholar 

  • Smith, I. (1993). Development of the trilateral flash cycle system part 1: Fundamental consideration. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 179–194.

    Google Scholar 

  • Steffen, M., Löffler, M., & Schaber, K. (2013). Efficiency of a new triangle cycle with flash evaporation in a piston engine. Energy, 295–307.

    Google Scholar 

  • Subiantoro, A., & Ooi, K. (2010). Design analysis of the novel revolving vane expander in a transcritical carbon dioxide refrigeration system. Science Direct, 675–685.

    Google Scholar 

  • Subiantoro, A., & Tiow, O. K. (2009). Introduction of the revolving vane expander. American Society of Heating and Air-Conditioning Engineering, 801–816.

    Google Scholar 

  • Sultan, I. A. (2005). The Limaçon of Pascal: mechanical generation and utilization for fluid processing. The Journal of Mechanical Engineering Science, 813–822.

    Google Scholar 

  • Sultan, I. A. (2006a). Inverse geometric design for a class of rotary positive displacement machines. Inverse Problems in Science and Engineering, 127–139.

    Google Scholar 

  • Sultan, I. A. (2006b). Profiling rotor for Limacon-to-Limacon compression-expansion machines. Journal of Mechanical Design, 787–793.

    Google Scholar 

  • Sultan, I. A. (2008). A geometric design model for the circoLimacon positive displacement machines. Journal of Mechanical Design, 1–8.

    Google Scholar 

  • Sultan, I. A., & Schaller, C. G. (2011). Optimum positioning of ports in the Limaçon gas expanders. Journal of Engineering for Gas Turbines and Power.

    Google Scholar 

  • Sutan, I. A. (2012). Optimum design of Limaçon gas expanders based on thermodynamic performance. Applied Thermal Engineering, 188–197.

    Google Scholar 

  • Tamura, I., Taniguchi, H., Sasaki, H., Yoshida, R., Sekiguchi, I., & Yokigawa, M. (1997). An analytical investigation of high-temperature heat pump system with screw expander for power recovery. Energy Conversion Management, 1007–1013.

    Google Scholar 

  • Tchanche, B. F., Pétrissans, M., & Papadakis, G. (2014). Heat resources and organic Rankine cycle machines. Renewable and Sustainable Energy Reviews, 1185–1199.

    Google Scholar 

  • United Nation Environment Programme. (1987, September). United Nation Environment Programme – Ozone Secretariat. Retrieved from The 1987 Montreal Protocol on Substances that Deplete the Ozone Layer: http://ozone.unep.org/new_site/en/Treaties/treaties_decisions-hb.php?sec_id=342&show_all

  • Wang, H., Peterson, R., Harada, K., Miller, E., Ingram-Goble, R., Fisher, L., et~al. (2010). Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling. Elsevier Energy, 447–458.

    Google Scholar 

  • Wang, H., Peterson, R. B., & Herron, T. (2009). Experimental performance of a compliant scroll expander for an organic Rankine cycle. Journal of Power and Energy, 863–871.

    Google Scholar 

  • Wang, Z., Wang, C., & Chen, K. (2001). Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. Journal of Power Sources, 40–50.

    Google Scholar 

  • Wang, W., Wu, Y.-t., Ma, C.-f., Liu, L.-d., & Yu, J. (2011). Preliminary experimental study of single screw expander prototype. Applied Thermal Engineering, 3684–3688.

    Google Scholar 

  • Wheildon, W. M. (1896). Patent No. 553,086. United States.

    Google Scholar 

  • Xiaojun, G., Liansheng, L., Yuanyang, Z., & Pengcheng, S. (2004). Research on a scroll expander used for recovering work in a fuel cell. Journal of Thermodynamics, 1–8.

    Google Scholar 

  • Yang, B., Peng, X., He, Z., Guo, B., & Xing, Z. (2009a). Experimental investigation on the internal working process of a CO2 rotary vane expander. Applied Thermal Engineering, 2289–2296.

    Google Scholar 

  • Yang, B., Peng, X., Sun, S., Guo, B., & Xing, Z. (2009b). Study of a rotary vane expander for the transcritical CO2 cycle—Part I: Experimental investigation. HVAC&R Research, 673–688.

    Google Scholar 

  • Zamfirescu, C., & Dincer, I. (2008). Thermodynamic analysis of a novel ammonia–water trilateral Rankine cycle. Thermochimica Acta, 7–15.

    Google Scholar 

  • Zhang, B., Peng, X., He, Z., Xing, Z., & Shu, P. (2006). Development of a double acting free piston expander for power recovery in transcritical CO2 cycle. Applied Thermal Engineering, 1629–1636.

    Google Scholar 

  • Zheng, N., Zhao, L., Wang, X., & Tan, Y. (2013). Experimental verification of a rolling-piston expander that applied for low-temperature organic Rankine cycle. Applied Energy, 1265–1274.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truong Phung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Phung, T., Sultan, I., Boretti, A. (2016). Design of Limaçon Gas Expanders. In: Jazar, R., Dai, L. (eds) Nonlinear Approaches in Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-27055-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27055-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27053-1

  • Online ISBN: 978-3-319-27055-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics