Skip to main content

Nonlinear Filtering Based on Model Prediction

  • Chapter
  • First Online:
Nonlinear Approaches in Engineering Applications

Abstract

Nonlinear filtering is of great importance in many applied areas. As a typical nonlinear filtering algorithm, the unscented Kalman filter (UKF) has the merits such as simplicity in realization, high filtering precision, and good convergence. However, its filtering performance is very sensitive to system model error. To overcome this limitation, this paper presents a new UKF for state estimation in nonlinear systems. This algorithm integrates model prediction into the process of the traditional UKF to improve the filtering robustness. This algorithm incorporates system driving noise in system state by increasing the state space dimension to expand the input of system state information to the system. The system model error is constructed by model prediction to rectify the system estimation from the traditional UKF. Simulation and experimental analyses have been conducted, showing that the proposed filtering algorithm is superior to the existing nonlinear filtering algorithms such as the EKF and traditional UKF in terms of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boutayeb, M., & Aubry, D. (1999). A strong tracking extended Kalman observer for nonlinear discrete-time systems. IEEE Transactions on Automatic Control, 44(8), 1550–1556.

    Article  MathSciNet  MATH  Google Scholar 

  • Crassidis, J. L., & Markley, F. L. (1997). Predictive filtering for nonlinear systems. Journal of Guidance Control and Dynamics, 20(3), 566–572.

    Google Scholar 

  • Ding, W., Wang, J., & Rizos, C. (2007). Improving adaptive Kalman estimation in GPS/INS integration. Journal of Navigation, 60(3), 517–529.

    Article  Google Scholar 

  • Doucet, A. On sequential simulation-based methods for Bayesian filtering, Technical Report 310. (1998). Department of Engineering, Cambridge University.

    Google Scholar 

  • Doucet, A., de Freitas, J. F. G., & Gordon, N. J. (2001). An introduction to sequential Monte Carlo methods, sequential Monte Carlo methods in practice. In A. Doucet, J. F. G. de Freitas & N. J. Gordon (Eds.). New York: Springer.

    Google Scholar 

  • Einicke, G. A. (2012). Smoothing, filtering and prediction - estimating the past, present and future. Rijeka, Croatia: InTech.

    Google Scholar 

  • Fang, J., & Gong, X. (2010). Predictive iterated Kalman filter for INS/GPS integration and its application to SAR motion compensation. IEEE Transactions on Instrumentation and Measurement, 59(4), 909–915.

    Article  Google Scholar 

  • Gao, S., Zhong, Y., & Li, W. (2011). Robust adaptive filtering method for SINS/SAR integrated navigation system. Aerospace Science and Technology, 15(6), 425–430.

    Article  Google Scholar 

  • Gao, S., Hu, G., & Zhong, Y. (2015). Windowing and random weighting-based adaptive unscented Kalman filter. International Journal of Adaptive Control and Signal Processing, 29(2), 201–223.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldenstein, S. (2004). A gentle introduction to predictive filters. Revista de Informática Teórica e Aplicada (RITA), XI (1), 61–89.

    Google Scholar 

  • Huang, R., Patwardhan, S. C., & Biegler, L. T. (2013). Robust stability of nonlinear model predictive control with extended Kalman filter and target setting. International Journal of Robust and Nonlinear Control, 23(11), 1240–1264.

    Article  MathSciNet  MATH  Google Scholar 

  • Julier, S. (1998). A skewed approach to filtering. Proceedings of SPIE, 3373, 271–282.

    Article  Google Scholar 

  • Julier, S. J, & Uhlmann, J. K. (1997). A new extension of the Kalman filter to nonlinear systems. Proceedings of SPIE, 3068, 182–193.

    Google Scholar 

  • Julier, S. J., & Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. Proceedings of The IEEE, 92(3), 401–422.

    Article  Google Scholar 

  • Julier, S. J., Uhlmann, J. K., & Durrant-Whyte, H. F. (1995). A new approach for filtering nonlinear systems. In: The Proceedings of the American Control Conference (pp. 1628–1632). Seattle, Washington.

    Google Scholar 

  • Jwo, D. J., & Lai, S. Y. (2009). Navigation integration using the fuzzy strong tracking unscented Kalman filter. Journal of Navigation, 62(2), 303–322.

    Article  Google Scholar 

  • Oppenheim, G., Philippe, A., & de Rigal, J. (2008). The particle filters and their applications. Chemometrics and Intelligent Laboratory Systems, 91(1), 87–93.

    Article  Google Scholar 

  • Pan, Q., Yang, F., Ye, L., Liang, Y., & Cheng, Y. (2005). Survey of a kind of nonlinear filters - UKF. Control and Decision, 20(5), 481–489.

    Google Scholar 

  • Sayed, A. H., & Rupp, M. (2010). Robust issues in adaptive filtering. In V. K. Madisetti (Ed.), Digital signal processing fundamentals (Vol. 20, pp. 1–20). Boca Raton, FL: Taylor & Francis.

    Google Scholar 

  • Van der Merwe, R., Doucet, A., De Freitas, N., & Wan, E. (2000). The unscented particle filter. In: Advances in neural information processing systems (Vol. 4, pp. 351–357).

    Google Scholar 

  • Wang, L. (2006). Fixed parameter estimation method using Gaussian particle filter. Lecture Notes in Computer Science, 4115/2006, 121–129.

    Google Scholar 

  • Yang, Y., & Cui, X. (2008). Adaptively robust filter with multi adaptive factors. Survey Review, 40(309), 260–270.

    Article  Google Scholar 

  • Yang, Y., & Gao, W. (2006). An optimal adaptive Kalman filter. Journal of Geodesy, 80(4), 177–183.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, W. B., & Li, S. Y. (2011). Autonomous navigation filtering algorithm for spacecraft based on strong tracking UKF. Systems Engineering and Electronics, 33(11), 2485–2491.

    Google Scholar 

  • Yang, Y., He, H.-B., & Xu, G. (2001). Adaptively robust filtering for kinematic geodetic positioning. Journal of Geodesy, 75(2–3), 109–116.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmin Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gao, S., Zhao, Y., Zhong, Y., Subic, A., Jazar, R. (2016). Nonlinear Filtering Based on Model Prediction. In: Jazar, R., Dai, L. (eds) Nonlinear Approaches in Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-27055-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27055-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27053-1

  • Online ISBN: 978-3-319-27055-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics