Skip to main content

Cluster Analysis by Variance Ratio Criterion and Quantum-Behaved PSO

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9483))

Included in the following conference series:

Abstract

(Aim) A novel and efficient method based on the quantum-behaved particle swarm was proposed to solve the cluster analysis problem. (Methods) The QPSO was utilized to detect the optimal point of the VAriance RAtio Criterion (VARAC), which was created by us as fitness function in the optimization model. The experimental dataset had 4 groups (400 data in total) with three various degrees of overlapping: non-overlapping, partial overlapping, and intensely overlapping. The proposed QPSO was compared with traditional global optimization algorithms: genetic algorithm (GA), combinatorial particle swarm optimization (CPSO), and firefly algorithm (FA) via running 20 times. (Results) The results demonstrated that QPSO could locate the best VARAC values with the least time among the four algorithms. (Conclusions) We can find that QPSO performs effectively and fast for the problem of cluster analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, G.N., Hu, J., Qi, J., Ma, J., Peng, Y.H.: An integrated feature selection and cluster analysis techniques for case-based reasoning. Eng. Appl. Artif. Intell. 39, 14–22 (2015)

    Article  Google Scholar 

  2. Amirian, E., Leung, J.Y., Zanon, S., Dzurman, P.: Integrated cluster analysis and artificial neural network modeling for steam-assisted gravity drainage performance prediction in heterogeneous reservoirs. Expert Syst. Appl. 42, 723–740 (2015)

    Article  Google Scholar 

  3. Tsai, C.F.: Combining cluster analysis with classifier ensembles to predict financial distress. Inf. Fusion 16, 46–58 (2014)

    Article  Google Scholar 

  4. Klepaczko, A., Kocinski, M., Materka, A.: Quantitative description of 3D vascularity images: texture-based approach and its verification through cluster analysis. Pattern Anal. Appl. 14, 415–424 (2011)

    Article  MathSciNet  Google Scholar 

  5. Illarionov, E., Sokoloff, D., Arlt, R., Khlystova, A.: Cluster analysis for pattern recognition in solar butterfly diagrams. Astro. Nachr. 332, 590–596 (2011)

    Article  Google Scholar 

  6. Wang, S., Ji, G., Dong, Z., Zhang, Y.: An improved quality guided phase unwrapping method and its applications to MRI. Prog. Electromagnet. Res. 145, 273–286 (2014)

    Article  Google Scholar 

  7. Ayech, M.W., Ziou, D.: Segmentation of Terahertz imaging using k-means clustering based on ranked set sampling. Expert Syst. Appl. 42, 2959–2974 (2015)

    Article  Google Scholar 

  8. Trespalacios, F., Grossmann, I.E.: Algorithmic approach for improved mixed-integer reformulations of convex generalized disjunctive programs. INFORMS J. Comput. 27, 59–74 (2015)

    Article  MathSciNet  Google Scholar 

  9. Jarboui, B., Cheikh, M., Siarry, P., Rebai, A.: Combinatorial particle swarm optimization (CPSO) for partitional clustering problem. Appl. Math. Comput. 192, 337–345 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gelbard, R., Carmeli, A., Bittmann, R.M., Ronen, S.: Cluster analysis using multi-algorithm voting in cross-cultural studies. Expert Syst. Appl. 36, 10438–10446 (2009)

    Article  Google Scholar 

  11. Niknam, T., Amiri, B.: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl. Soft Comput. 10, 183–197 (2010)

    Article  Google Scholar 

  12. Zhang, Y., Wu, L., Wang, S., Huo, Y.: Chaotic artificial bee colony used for cluster analysis. In: Chen, R. (ed.) ICICIS 2011 Part I. CCIS, vol. 134, pp. 205–211. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Abul Hasan, M.J., Ramakrishnan, S.: A survey: hybrid evolutionary algorithms for cluster analysis. Artif. Intell. Rev. 36, 179–204 (2011)

    Article  Google Scholar 

  14. Kuo, R.J., Syu, Y.J., Chen, Z.Y., Tien, F.C.: Integration of particle swarm optimization and genetic algorithm for dynamic clustering. Inf. Sci. 195, 124–140 (2012)

    Article  Google Scholar 

  15. Zhang, Y., Li, D.: Cluster analysis by variance ratio criterion and firefly algorithm. JDCTA: Int. J. Digit. Content Technol. Appl. 7, 689–697 (2013)

    Google Scholar 

  16. Yang, Z., Wang, L.T., Fan, K.F., Lai, Y.X.: Exemplar-based clustering analysis optimized by genetic algorithm. Chin. J. Electron. 22, 735–740 (2013)

    Google Scholar 

  17. Wan, S.A.: Entropy-based particle swarm optimization with clustering analysis on landslide susceptibility mapping. Environ. Earth Sci. 68, 1349–1366 (2013)

    Article  Google Scholar 

  18. Palaparthi, A., Riede, T., Titze, I.R.: Combining multiobjective optimization and cluster analysis to study vocal fold functional morphology. IEEE Trans. Biomed. Eng. 61, 2199–2208 (2014)

    Article  Google Scholar 

  19. Zhang, T.J., Cao, Y., Mu, X.W.: Weighted k-means clustering analysis based on improved genetic algorithm. Sens. Mechatron. Autom. 511–512, 904–908 (2014)

    Google Scholar 

  20. Ozturk, C., Hancer, E., Karaboga, D.: Dynamic clustering with improved binary artificial bee colony algorithm. Appl. Soft Comput. 28, 69–80 (2015)

    Article  Google Scholar 

  21. Ghamisi, P., Benediktsson, J.A.: Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geosci. Remote Sens. Lett. 12, 309–313 (2015)

    Article  Google Scholar 

  22. Zhang, Y., Wang, S., Phillips, P., Ji, G.: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection. Knowl.-Based Syst. 64, 22–31 (2014)

    Article  Google Scholar 

  23. Wang, S., Dong, Z.: Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Prog. Electromag. Res. 144, 171–184 (2014)

    Article  Google Scholar 

  24. Wang, S., Zhang, Y., Dong, Z., Du, S., Ji, G., Yan, J., Yang, J., Wang, Q., Feng, C., Phillips, P.: Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int. J. Imaging Syst. Technol. 25, 153–164 (2015)

    Article  Google Scholar 

  25. Lin, L., Guo, F., Xie, X.L., Luo, B.: Novel adaptive hybrid rule network based on TS fuzzy rules using an improved quantum-behaved particle swarm optimization. Neurocomputing 149, 1003–1013 (2015)

    Article  Google Scholar 

  26. van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176, 937–971 (2006)

    Article  MATH  Google Scholar 

  27. Davoodi, E., Hagh, M.T., Zadeh, S.G.: A hybrid improved quantum-behaved particle swarm optimization-simplex method (IQPSOS) to solve power system load flow problems. Appl. Soft Comput. 21, 171–179 (2014)

    Article  Google Scholar 

  28. Fu, X., Liu, W.S., Zhang, B., Deng, H.: Quantum behaved particle swarm optimization with neighborhood search for numerical optimization. Math. Prob. Eng. 2013, 10 (2013). doi:10.1155/2013/469723

    Google Scholar 

  29. Zhang, Y., Dong, Z., Wang, S., Ji, G., Yang, J.: Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy 17, 1795–1813 (2015)

    Article  Google Scholar 

  30. Zhang, Y., Wang, S., Phillips, P., Dong, Z., Ji, G., Yang, J.: Detection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC. Biomed. Signal Process. Control 21, 58–73 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This paper was supported by NSFC (610011024, 61273243, 51407095), Program of Natural Science Research of Jiangsu Higher Education Institutions (13KJB460011, 14KJB520021), Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing (BM2013006), Key Supporting Science and Technology Program (Industry) of Jiangsu Province (BE2012201, BE2014009-3, BE2013012-2), Special Funds for Scientific and Technological Achievement Transformation Project in Jiangsu Province (BA2013058), Nanjing Normal University Research Foundation for Talented Scholars (2013119XGQ0061, 2014119XGQ0080), and Science Research Foundation of Hunan Provincial Education Department (12B023).

Conflict of interest

We have no conflicts of interest to disclose with regard to the subject matter of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuihua Wang or Yudong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, S. et al. (2015). Cluster Analysis by Variance Ratio Criterion and Quantum-Behaved PSO. In: Huang, Z., Sun, X., Luo, J., Wang, J. (eds) Cloud Computing and Security. ICCCS 2015. Lecture Notes in Computer Science(), vol 9483. Springer, Cham. https://doi.org/10.1007/978-3-319-27051-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27051-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27050-0

  • Online ISBN: 978-3-319-27051-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics