Skip to main content

Algorithms for CO2 Storage Capacity Estimation: Review and Case Study

  • Chapter
  • First Online:

Abstract

The estimation of CO2 storage capacity in deep geologic formations is a pre-requisite for an efficient and safe application of Carbon Capture and Storage (CCS). The evaluation of storage resources for CO2 geological sequestration is a challenging task and has been tackled using several static algorithms and dynamic methods, on a variety of scales ranging from country to site-specific. The purpose of this study is to present an up-to-date as well as an overall review of the storage capacity algorithms for oil and gas reservoirs, coal seams, and deep saline aquifers, including some worldwide estimation examples. Moreover, a practical application at local scale was also performed for an Italian deep reservoir located in the Po Plain (Northern Italy). The effective storage capacities were obtained applying the commonly established static methods, using both the theoretical and the geocellular volume of the reservoir. Although a conservative approach, this study demonstrates that the selected structure has favorable characteristics for CO2 geological storage and has the capacity to host the most part of the Po Plain CO2 emissions for several decades.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Metz B, Davidson O, de Coninck H, Loos M, Meyer L (2005) Carbon dioxide capture and storage. In: Intergovernmental Panel on Climate Change: underground geological storage. Cambridge University Press, Cambridge, England

    Google Scholar 

  2. Bachu S, Bonijoly D, Bradshaw J et al (2007) CO2 storage capacity estimation: methodology and gaps. Int J Greenhouse Gas Control 1(4):430–443

    Article  Google Scholar 

  3. USDOE (U.S. Department of Energy) (2007) Carbon sequestration atlas of United States and Canada, 1st edn. USDOE (U.S. Department of Energy), Morgantown

    Google Scholar 

  4. USDOE (U.S. Department of Energy) (2010) Carbon sequestration atlas of the United States and Canada, 3rd edn. USDOE (U.S. Department of Energy), Morgantown

    Google Scholar 

  5. USDOE (U.S. Department of Energy) (2010b) Site screening, selection and characterization for storage of CO2 in deep geologic formations. United State Department of Energy: National Energy Technology Laboratory. http://www.netl.doe.gov/technologies/carbon seq/refshelf/BPM-SiteScreening.pdf

  6. USDOE (U.S. Department of Energy) (2012) Carbon sequestration atlas of the United States and Canada, 4th edn. USDOE (U.S. Department of Energy), Morgantown

    Google Scholar 

  7. CSLF (2008) Comparison between methodologies recommended for estimation of CO2 storage capacity in geological media. In: Bachu S (ed) Carbon Sequestration Leadership Forum (CSLF) http://www.cslforum.org/publications/documents/PhaseIIIReportStorageCapacityEstimation TaskForce0408.pdf

  8. Zhou Q, Birkholzer JT, Tsang C-F et al (2008) A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int J Greenhouse Gas Control 2(4):626–639

    Article  Google Scholar 

  9. Brennan ST, Burruss RC, Merrill MD et al (2010) A probabilistic assessment methodology for the evaluation of geologic carbon dioxide storage. In: USGS Open-File Report 2010–1127, p 31

    Google Scholar 

  10. Goodman A, Hakala A, Bromhal G et al (2011) U.S. DOE methodology for development of geologic storage potential for carbon dioxide at national and regional scale. Int J Greenhouse Gas Control 5(4):952–965

    Article  Google Scholar 

  11. Szulczewski ML, McMinn CW, Herzog HJ et al (2012) Lifetime of carbon capture and storage as a climate-change mitigation technology. PNAS 109(14):5185–5189

    Article  Google Scholar 

  12. Szulczewski ML, McMinn CW, Juanes R (2014) Theoretical analysis of how pressure buildup and CO2 migration both constrain storage capacity in deep saline aquifers. Int J Greenhouse Gas Control 23:113–118

    Article  Google Scholar 

  13. Bradshaw J, Bachu S, Bonijoly D et al (2007) CO2 storage capacity estimation: issues and development of standards. Int J Greenhouse Gas Control 1(1):62–68

    Article  Google Scholar 

  14. Blondes MS, Brennan ST, Merrill MD et al (2013) National assessment of geologic carbon dioxide storage resources– methodology implementation. In: USGS Open-File Report 2013–1055, p 26

    Google Scholar 

  15. Brennan ST (2014) The U. S. geological survey carbon dioxide storage efficiency value methodology: results and observations. Energy Procedia 63:5123–5129

    Article  Google Scholar 

  16. Zhao X, Liao X, He L (2015) The evaluation methods for CO2 storage in coal beds, in China. J Energy Inst. doi:10.1016/j.joei.2015.03.001

    Google Scholar 

  17. Gorecki CD, Sorensen JA, Bremer JM et al (2009) Development of storage coefficients for determining the effective CO2 storage resource in deep saline formations. SPE paper 126444

    Google Scholar 

  18. IEA-GHG (International Energy Agency Greenhouse Gas Programme) (2009a) CO2 storage in depleted gas fields. In: IEA Greeenhouse Gas R&D Programme (IEA-GHG), Report Number 2009/01

    Google Scholar 

  19. IEA-GHG (International Energy Agency Greenhouse Gas Programme) (2009b) Development of storage coefficients for CO2 storage in deep saline formations. In: IEA Greenhouse Gas R&D Programme (IEA-GHG), Report Number 2009/13

    Google Scholar 

  20. Wang Y, Xu Y, Zhang K (2012) Investigation of CO2 storage capacity in open saline aquifers with numerical models. Procedia Eng 31:886–892

    Article  Google Scholar 

  21. USGS (United States Geological Survey) (2013a) National assessment of geologic carbon dioxide storage resources – results. USGS Circular 1386, 41

    Google Scholar 

  22. USGS (United States Geological Survey) (2013b) National assessment of geologic carbon dioxide storage resources – data. USGS Data Series 774, 13, plus appendices and data files

    Google Scholar 

  23. Economides MJ, Ehlig-Economides CA (2009) Sequestering carbon dioxide in a closed underground volume. Society of Petroleum Engineers, SPE 124430, pp 8

    Google Scholar 

  24. Thibeau S, Bachu S, Birkholzer JT et al (2014) Using pressure and volumetric approaches to estimate CO2 storage capacity in deep saline aquifers. Energy Procedia 63:5294–5304

    Article  Google Scholar 

  25. Cavanagh A, Wildgust N (2011) Pressurization and brine displacement issues for deep saline formation CO2 storage. Energy Procedia 4:4814–4821

    Article  Google Scholar 

  26. van der Meer LGH, Egberts PJP (2008) A general method for calculating subsurface storage capacity. OTC Paper 19309

    Google Scholar 

  27. Bachu S (2015) Review of CO2 storage efficiency in deep saline aquifers. Int J Greenhouse Gas Control. doi:10.1016/j.ijggc.2015.01.007

    Google Scholar 

  28. Buttinelli M, Procesi M, Cantucci B et al (2011) The geo-database of caprock quality and deep saline aquifers distribution for geological storage of CO2 in Italy. Energy 36:2968–2983

    Article  Google Scholar 

  29. Donda F, Volpi V, Persoglia S et al (2011) CO2 storage potential of deep saline aquifers: the case of Italy. Int J Greenhouse Gas Control 5:327–335

    Article  Google Scholar 

  30. Stevens SH, Kuuskra VA, Gale J (2001) Sequestration of CO2 in depleted oil & gas fields: global capacity, costs and barriers. In: Williams DJ, Durie RA, McMullan P, Paulson CAJ, Smith AY (eds) Proceedings of the fifth international conference on greenhouse gas control technologies. CSIRO Publishing, Collingwood, pp 278–283

    Google Scholar 

  31. Doughty C, Pruess K (2004) Modeling supercritical carbon dioxide injection in heterogeneous porous media. Vadose Zone J 3(3):837–847

    Article  Google Scholar 

  32. Lake LW (1989) Enhance oil recovery. Prentice Hall, Englewood Cliffs

    Google Scholar 

  33. Goodman A, Bromhal G, Strazisar B et al (2013) Comparison of methods for geologic storage of carbon dioxide in saline formations. Int J Greenhouse Gas Control 18:329–342

    Article  Google Scholar 

  34. Bachu S, Adams JJ (2003) Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers Manag 44(20):3151–3175

    Article  Google Scholar 

  35. Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193:257–271

    Article  Google Scholar 

  36. Juanes R, Spiteri EJ, Jr O et al (2006) Impact of relative permeability hysteresis on geological CO2 storage. Water Resour Res 42, W12418. doi:10.1029/2005WR004806

    Google Scholar 

  37. Kumar A, Noh MH, Sepehrnoori K et al (2005) Simulating CO2 storage in deep saline aquifers. In: Benson SM (ed) Carbon dioxide capture for storage in deep geologic formations-results from the CO2 capture project, vol 2, Geologic storage of carbon dioxide with monitoring and verification. Elsevier, London, pp 898–977

    Google Scholar 

  38. Espie T, Woods A (2014) Testing some common concepts in CO2 storage. Energy Procedia 63:5450–5460

    Article  Google Scholar 

  39. McMinn CW, Szulcczewski ML, Juanes R (2010) CO2 migration in saline aquifers. Part 1: capillary trapping under slope and groundwater flow. J Fluid Mech 662:329–351

    Article  Google Scholar 

  40. Rutqvist J, Birkholzer JT, Cappa F et al (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers Manag 48:1798–1807

    Article  Google Scholar 

  41. Cappa F, Rutqvist J (2011a) Impact of CO2 geological sequestration on the nucleation of earthquakes. Geophys Res Lett 38. doi:10.1029/2011GL048487

    Google Scholar 

  42. Cappa F, Rutqvist J (2011b) Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int J Greenhouse Gas Control 5. doi:10.1016/j.ijggc.2010.08.005

    Google Scholar 

  43. Thibeau S, Mucha V (2011) Have we overestimated saline aquifer CO2 storage capacities? Oil Gas Sci Technol Rev IFP Energies nouvelles 66(1):81–92

    Article  Google Scholar 

  44. Takahashi T, Ohsumi T, Nakayama K (2009) Estimation of CO2 aquifer storage potential in Japan. Energy Procedia 1:2631–2638

    Article  Google Scholar 

  45. Tanaka S, Koide H, Sasagawa A (1995) Possibility of underground CO2 storage in Japan. Energy Convers Manage 36:527–530

    Article  Google Scholar 

  46. Solomon S, Bureau-Cauchois G, Ahmed N et al (2014) CO2 storage capacity assessment of deep saline aquifers in the Mozambique Basin. Energy Procedia 63:5266–5283

    Article  Google Scholar 

  47. Höeller S, Viebahn P (2011) Assessment of CO2 storage capacity in geological formations of Germany and Northern Europe. Wuppertal Institute for Climate, Environment and Energy, Berlin

    Google Scholar 

  48. Koukousaz N, Ziogou F, Gemeni V (2009) Preliminary assessment of CO2 geological storage opportunities in Greece. Int J Greenhouse Gas Control 3:502–513

    Article  Google Scholar 

  49. Fantoni R, Franciosi R (2010) Tectono-sedimentary setting of the Po Plain and Adriatic foreland. Rendiconti Lincei 21(1):197–209

    Article  Google Scholar 

  50. Consiglio Nazionale delle Ricerche (1992) Structural model of Italy and gravitymap, scale 1:500000. In: Progetto Finalizzato Geodinamica. Quad Ric Sci 114, Rome

    Google Scholar 

  51. Bertello F, Fantoni R, Franciosi R et al (2010) From thrust and fold belt to foreland: hydrocarbon occurrences in Italy. In: Vining BA, Pickering SC (eds) Petroleum geology: from mature basin to new frontiers. Proceedings of the 7th petroleum geology conference, Geol Soc, pp 113–126

    Google Scholar 

  52. Casero P (2004) Structural setting of petroleum exploration plays in Italy. Italian Geological Society special volume of the Italian Geological Society for the IGC 32 Florence-2004

    Google Scholar 

  53. ViDEPI Project (Visibility of petroleum exploration data in Italy). http://unmig.sviluppoeconomico.gov.it/videpi/videpi.asp

  54. Montone P, Mariucci MT (2015) P-wave velocity, density, and vertical stress magnitude along the crustal Po Plain (Northern Italy) from Sonic Log Drilling Data. Pure Appl Geophys 172:1547–1561

    Article  Google Scholar 

  55. Malagnini L, Herrmann RB, Munafò I et al (2012) The 2012 Ferrara seismic sequence: regional crustal structure, earthquake sources, and seismic hazard. Geophys Res Lett. doi:10.1029/2012GL053214

    Google Scholar 

  56. Chiarabba C, Jovane L, DiStefano R (2005) A new view of Italian seismicity using 20 years of instrumental recordings. Tectonophysics 395(3):251–268, ISO 690

    Article  Google Scholar 

  57. ISIDe Working Group (INGV, 2010), Italian Seismological Instrumental and parametric database. http://iside.rm.ingv.it

  58. Govoni A, Marchetti A, De Gori P et al (2014) The 2012 Emilia seismic sequence (Northern Italy): imaging the thrust fault system by accurate aftershocks location. Tectonophysics. doi:10.1016/j.tecto.2014.02.013

    Google Scholar 

  59. Chiarabba C, De Gori P, Improta L et al (2014) Frontal compression along the Apennines thrust system: the Emilia 2012 example from seismicity to crustal structure. J Geodyn 82:98–109

    Article  Google Scholar 

  60. Vannoli P, Burrato P, Valensise G (2014) The seismotectonics of the Po Plain (northern Italy): tectonic diversity in a blind faulting domain. Pure Appl Geophys 172(5):1105–1142

    Article  Google Scholar 

  61. Boccaletti M, Bonini M, Corti G et al (2004) Carta simotettonica della regione Emilia Romagna, 1:250.000 e note illustrative. SELCA Editore, Firenze

    Google Scholar 

  62. RER, ENI-Agip (1998) Riserve idriche sotterranee della Regione Emilia-Romagna, Publication Regione Emilia Romagna

    Google Scholar 

  63. Maesano FE, D’Ambrogi C, Burrato P et al (2015) Slip-rates of blind thrusts in slow deforming areas: examples from the Po Plain (Italy). Tectonophysics 643:8–25

    Article  Google Scholar 

  64. Molinari I, Argnani A, Morelli A et al (2015) Development and testing of a 3D seismic velocity model of the Po Plain Sedimentary Basin, Italy. Bull Seismol Soc Am. doi:10.1785/0120140204

    Google Scholar 

  65. Buttinelli M, Procesi M, Cantucci B et al (2013) An overview on the outermost buried fronts of northern Apennines: hints, insights, limits and constraints for fluids geological storage. In: Proceedings of Geoitalia 2013 congress – IX edizione del Forum Italiano di Scienze della Terra “Le Geoscienze per la Società” – Pisa, 15–18 Settembre 2013

    Google Scholar 

  66. Duan Z, Møller N, Weare JH (1992) An equation of state for the CH4-CO2-H2O system – II. Mixtures from 50 to 1000 °C and 0 to 1000 bar. Geochim Cosmochim Acta 56:2619–2631

    Article  Google Scholar 

  67. Baù D, Ferronato M, Gambolati G et al (2002) Basin-scale compressibility of the northern Adriatic by the radioactive marker technique. Geotechnique 52:605–616

    Article  Google Scholar 

  68. De Lauretis R, Romano D, Vitullo M et al (2014) National greenhouse gas inventory system in Italy- year 2014. ISPRA- Institute for Environmental Protection and Research Environment Department, Rome

    Google Scholar 

  69. INEMAR – Arpa Emilia-Romagna (2013) INEMAR, Inventario Emissioni in Atmosfera: emissioni in Regione Emilia-Romagna nell´anno 2010 – Arpa Emilia-Romagna

    Google Scholar 

Download references

Acknowledgments

The authors thank the Midland Valley company for providing an educational license of the Move software, which was used for the seismic interpretations and reservoir geometries reconstructions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Cantucci .

Editor information

Editors and Affiliations

Nomenclature and Greek Letters

Nomenclature and Greek Letters

Nomenclature

A:

Geographical/Trap area of the storage site

Bf :

Formation volume factor: converts oil/gas volume from standard to reservoir conditions (15 °C and 1 bar)

D:

Depth to top of the aquifer

E:

CO2 storage efficiency factor

Ef :

Sweep efficiency

G:

Acceleration gravity

Ge :

Effective storage capacity by CO2 mass

\( {G}_{e- geoc} \) :

Effective storage capacity by CO2 mass computed by geocelluar volume

Gt :

Theoretical storage capacity by CO2 mass

Gtech :

Technically accessible storage resource by CO2 mass

H:

Average gross thickness of the reservoir

H:

Net thickness of the reservoir

K:

Rock permeability

\( {k_{CO}}_{{}_2r} \) :

CO2 relative permeability

LT :

Length of domain for migration model

\( {m}_{C{O}_2} \) :

CO2 solubility coefficient. Subscripts oil and water stand for CO2 solubility in oil and water, respectively

P:

Pressure. Subscripts r and s stand for reservoir and surface conditions; respectively

Pfrac :

Fracture pressure

ΔPmax :

Maximum allowed pressure

Rf :

Recovery factor

Rw :

Recovery of reservoir water

\( {S}_{C{O}_2} \) :

CO2 saturation within the Volume where CO2 plume is present

\( {S}_{C{O}_{2irr}} \) :

Irreducible CO2 saturation within the Volume where CO2 plume is present

\( {S}_{C{O}_{2 trap}} \) :

Trapped CO2 saturation after flow reversal

Sw :

Water saturation

Swirr :

Irreducible water saturation

T:

Time

T:

Temperature. Subscripts r and s stand for reservoir and surface conditions; respectively

Vgeoc :

Reservoir volume computed by £G geological models

Vw :

Water volume. Subscripts i and p stand for injected and produced; respectively

ΔVtrap :

Rock volume previously saturated with CO2 that is invaded by water

W:

Width of the well array

XCO2 :

CO2 mass fraction in formation water. Subscripts 0 and s stand for initial and CO2 content at saturation, respectively

Z:

Gas compressibility. Subscripts r and s stand for reservoir and surface conditions; respectively

Greek Letters

B:

Bulk compressibility. Subscripts p and w stand for porous medium and water, respectively

Μ:

Dynamic viscosity. Subscripts CO2 and w stand for initial CO2 and water, respectively

\( {\rho}_{C{O}_2} \) :

Density of CO2 at reservoir pressure and temperature conditions. Subscripts std indicate standard conditions (15 °C and 1 bar)

ρ coal :

Bulk coal density

ρw :

Density of water at reservoir pressure and temperature conditions. Subscripts 0 and s stand for initial and CO2 content at saturation, respectively

Φ:

Average porosity of reservoir, subscript e stand for effective porosity

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cantucci, B., Buttinelli, M., Procesi, M., Sciarra, A., Anselmi, M. (2016). Algorithms for CO2 Storage Capacity Estimation: Review and Case Study. In: Vishal, V., Singh, T. (eds) Geologic Carbon Sequestration. Springer, Cham. https://doi.org/10.1007/978-3-319-27019-7_2

Download citation

Publish with us

Policies and ethics