Skip to main content

Mineral Carbonation in Ultramafic and Basaltic Rocks

  • Chapter
  • First Online:

Abstract

Carbon capture and storage in the form of mineral carbonation in ultramafic and basaltic rocks offers a geologically stable repository of anthropogenic CO2. This chapter provides fundamental, theoretical and applied concepts relevant to mineral carbonation in peridotite, serpentinite and basaltic rocks. We explore the general global distribution of these lithologies and bring to the discussion the potential role of sedimentary serpentine, so far an overlooked type of rock that may offer both reactive silicate minerals and requisite permeability for CO2 injection. The chapter recalls chemical reactions, field observations, and historical perspectives that have informed experimental and modeling developments in the area of mineral carbonation. Encouraging scientific results have inspired the injection of CO2 in basaltic rocks in Iceland and Washington, USA, and proposed drilling in Oman. Besides the high economic cost of mineral carbonation, other limitations include the availability of water, distance between CO2 sources and target rocks, and various coupled geochemical and physical aspects that remain to be further addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. IPCC (2005) IPCC special report on carbon dioxide capture and storage. Prepared by working group III of the Intergovernmental Panel on Climate Change IPCC. doi:10.1021/es200619j

    Google Scholar 

  2. Scott V, Gilfillan S, Markusson N et al (2013) Last chance for carbon capture and storage. Nat Clim Chang 3:105–111. doi:10.1038/nclimate1695

    Article  Google Scholar 

  3. Gerlagh R, van der Zwaan B (2003) Gross world product and consumption in a global warming model with endogenous technological change. Resour Energy Econ 25:35–57. doi:10.1016/S0928-7655(02)00020-9

    Article  Google Scholar 

  4. van der Zwaan B, Gerlagh R (2009) Effectiveness of CCS with time-dependent CO2 leakage. Energy Procedia 1:4977–4984. doi:10.1016/j.egypro.2009.05.002

    Article  Google Scholar 

  5. Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44:277–289. doi:10.1007/s00254-003-0762-9

    Article  Google Scholar 

  6. Bachu S (2008) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Energy Combust Sci 34:254–273. doi:10.1016/j.pecs.2007.10.001

    Article  Google Scholar 

  7. Bradshaw J, Allinson G, Bradshaw B et al (2004) Australia’s CO2 geological storage potential and matching of emission sources to potential sinks. Energy 29:1623–1631. doi:10.1016/j.energy.2004.03.064

    Article  Google Scholar 

  8. Vishal V, Ranjith PG, Singh TN (2013) CO2 permeability of Indian bituminous coals: implications for carbon sequestration. Int J Coal Geol 105:36–47. doi:10.1016/j.coal.2012.11.003

    Article  Google Scholar 

  9. Vishal V, Singh L, Pradhan SP et al (2013) Numerical modeling of Gondwana coal seams in India as coalbed methane reservoirs substituted for carbon dioxide sequestration. Energy 49:384–394. doi:10.1016/j.energy.2012.09.045

    Article  Google Scholar 

  10. Lackner KS (2003) Climate change: a guide to CO2 sequestration. Science 300:1677–1678. doi:10.1126/science.1079033

    Article  Google Scholar 

  11. Gislason SR, Oelkers EH (2014) Carbon storage in basalt. Science 344(6182):373–374. doi:10.1126/science.1250828

    Article  Google Scholar 

  12. Power IM, Harrison AL, Dipple GM et al (2013) Carbon mineralization: from natural analogues to engineered systems. Rev Mineral Geochem 77:305–360. doi:10.2138/rmg.2013.77.9

    Article  Google Scholar 

  13. Gerdemann SJ, O’Connor WK, Dahlin DC et al (2007) Ex situ aqueous mineral carbonation. Environ Sci Technol 41:2587–2593

    Article  Google Scholar 

  14. Oelkers EH, Gislason SR, Matter J (2008) Mineral carbonation of CO2. Elements 4:333–337. doi:10.2113/gselements.4.5.333

    Article  Google Scholar 

  15. Sanna A, Uibu M, Caramanna G et al (2014) A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev 43:8049–8080. doi:10.1039/c4cs00035h

    Article  Google Scholar 

  16. Seifritz W (1990) CO2 disposal by means of silicates. Nature 345:486–486. doi:10.1038/345486b0

    Article  Google Scholar 

  17. Dunsmore HE (1992) A geological perspective on global warming and the possibility of carbon dioxide removal as calcium carbonate mineral. Energy Convers Manag 33:565–572. doi:10.1016/0196-8904(92)90057-4

    Article  Google Scholar 

  18. Lackner KS, Wendt CH, Butt DP et al (1995) Carbon dioxide disposal in carbonate minerals. Energy 20:1153–1170. doi:10.1016/0360-5442(95)00071-N

    Article  Google Scholar 

  19. Oze C, Bird DK, Fendorf S (2007) Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc Natl Acad Sci U S A 104:6544–6549. doi:10.1073/pnas.0701085104

    Article  Google Scholar 

  20. Matter JM, Kelemen PB (2009) Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat Geosci 2:837–841. doi:10.1038/ngeo683

    Article  Google Scholar 

  21. McGrail BP, Schaef HT, Ho AM et al (2006) Potential for carbon dioxide sequestration in flood basalts. J Geophys Res 111:B12201. doi:10.1029/2005JB004169

    Article  Google Scholar 

  22. Lockwood JP (1971) Sedimentary and gravity-slide emplacement of serpentinite. Geol Soc Am Bull 82:919. doi:10.1130/0016-7606(1971)82[919:SAGEOS]2.0.CO;2

    Article  Google Scholar 

  23. Bénézeth P, Saldi GD, Dandurand J-L, Schott J (2011) Experimental determination of the solubility product of magnesite at 50–200 °C. Chem Geol 286:21–31. doi:10.1016/j.chemgeo.2011.04.016

    Article  Google Scholar 

  24. Klein F, Garrido CJ (2011) Thermodynamic constraints on mineral carbonation of serpentinized peridotite. Lithos 126:147–160. doi:10.1016/j.lithos.2011.07.020

    Article  Google Scholar 

  25. Marini L (2007) Geological sequestration of carbon dioxide: thermodynamics, kinetics, and reaction path modeling, 1st edn. Elsevier Ltd, Amsterdam

    Google Scholar 

  26. Kelemen PB, Matter J (2008) In situ carbonation of peridotite for CO2 storage. Direct 105:17295–17300. doi:10.1073/pnas.0805794105

    Google Scholar 

  27. Oskierski HC, Dlugogorski BZ, Jacobsen G (2013) Sequestration of atmospheric CO2 in a weathering-derived, serpentinite-hosted magnesite deposit: 14C tracing of carbon sources and age constraints for a refined genetic model. Geochim Cosmochim Acta 122:226–246. doi:10.1016/j.gca.2013.08.029

    Article  Google Scholar 

  28. Kelemen PB, Matter J, Streit EE et al (2011) Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Annu Rev Earth Planet Sci 39:545–576. doi:10.1146/annurev-earth-092010-152509

    Article  Google Scholar 

  29. Streit E, Kelemen P, Eiler J (2012) Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman. Contrib Miner Petrol 164:821–837. doi:10.1007/s00410-012-0775-z

    Article  Google Scholar 

  30. Boschi C, Dini A, Dallai L et al (2009) Enhanced CO2-mineral sequestration by cyclic hydraulic fracturing and Si-rich fluid infiltration into serpentinites at Malentrata (Tuscany, Italy). Chem Geol 265:209–226. doi:10.1016/j.chemgeo.2009.03.016

    Article  Google Scholar 

  31. Harrison AL, Power IM, Dipple GM (2013) Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environ Sci Technol 47:126–134. doi:10.1021/es3012854

    Article  Google Scholar 

  32. Wilson SA, Dipple GM, Power IM et al (2009) Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: examples from the clinton creek and cassiar chrysotile deposits, Canada. Econ Geol 104:95–112. doi:10.2113/gsecongeo.104.1.95

    Article  Google Scholar 

  33. Wilson SA, Barker SLL, Dipple GM, Atudorei V (2010) Isotopic disequilibrium during uptake of atmospheric CO2 into mine process waters: implications for CO2 sequestration. Environ Sci Technol 44:9522–9529. doi:10.1021/es1021125

    Article  Google Scholar 

  34. Power IM, Wilson SA, Thom JM et al (2009) The hydromagnesite playas of Atlin, British Columbia, Canada: a biogeochemical model for CO2 sequestration. Chem Geol 260:302–316. doi:10.1016/j.chemgeo.2009.01.012

    Article  Google Scholar 

  35. Power IM, Wilson SA, Harrison AL et al (2014) A depositional model for hydromagnesite-magnesite playas near Atlin, British Columbia. Canada Sedimentol 61(6):1701–1733. doi:10.1111/sed.12124

    Article  Google Scholar 

  36. Beinlich A, Austrheim H (2012) Carbonation of mine shafts in serpentinized peridotite – in situ sequestration of modern CO2 at low temperature, 14:4693

    Google Scholar 

  37. Andreani M, Luquot L, Gouze P et al (2009) Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites. Environ Sci Technol 43(4):1226–1231. doi:10.1021/es8018429

    Article  Google Scholar 

  38. Saldi GD, Jordan G, Schott J, Oelkers EH (2009) Magnesite growth rates as a function of temperature and saturation state. Geochim Cosmochim Acta 73:5646–5657. doi:10.1016/j.gca.2009.06.035

    Article  Google Scholar 

  39. Daval D, Sissmann O, Menguy N et al (2011) Influence of amorphous silica layer formation on the dissolution rate of olivine at 90 °C and elevated pCO2. Chem Geol 284:193–209. doi:10.1016/j.chemgeo.2011.02.021

    Article  Google Scholar 

  40. Saldi GD, Schott J, Pokrovsky OS et al (2012) An experimental study of magnesite precipitation rates at neutral to alkaline conditions and 100–200 °C as a function of pH, aqueous solution composition and chemical affinity. Geochim Cosmochim Acta 83:93–109. doi:10.1016/j.gca.2011.12.005

    Article  Google Scholar 

  41. Johnson NC, Thomas B, Maher K et al (2014) Olivine dissolution and carbonation under conditions relevant for in situ carbon storage. Chem Geol 373:93–105. doi:10.1016/j.chemgeo.2014.02.026

    Article  Google Scholar 

  42. Olsson J, Bovet N, Makovicky E et al (2012) Olivine reactivity with CO2 and H2O on a microscale: implications for carbon sequestration. Geochim Cosmochim Acta 77:86–97. doi:10.1016/j.gca.2011.11.001

    Article  Google Scholar 

  43. Paukert AN, Matter JM, Kelemen PB et al (2012) Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman. Chem Geol 330–331:86–100. doi:10.1016/j.chemgeo.2012.08.013

    Article  Google Scholar 

  44. Cipolli F (2004) Geochemistry of high-pH waters from serpentinites of the Gruppo di Voltri (Genova, Italy) and reaction path modeling of CO2 sequestration in serpentinite aquifers. Appl Geochem 19:787–802. doi:10.1016/j.apgeochem.2003.10.007

    Article  Google Scholar 

  45. Xu T, Apps J, Pruess K (2000) Analysis of mineral trapping for CO2 disposal in deep aquifers. Lawrence Berkeley National Laboratory, Berkeley. Retrieved from: http://escholarship.org/uc/item/59c8k6gb

  46. Harrison AL, Dipple GM, Power IM, Mayer KU (2015) Influence of surface passivation and water content on mineral carbonation rates: implications for CO2 sequestration in mine tailings. Geochim Cosmochim Acta 148:477–495. doi:10.1016/j.gca.2014.10.020

    Article  Google Scholar 

  47. Wilson SA, Harrison AL, Dipple GM et al (2014) Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining. Int J Greenh Gas Control 25:121–140. doi:10.1016/j.ijggc.2014.04.002

    Article  Google Scholar 

  48. Kelemen P, Rajhi AA, Godard M et al (2013) Scientific drilling and related research in the Samail Ophiolite. Sultanate Oman Sci Drill 15:64–71. doi:10.2204/iodp.sd.15.10.2013

    Article  Google Scholar 

  49. Falk ES, Kelemen PB (2015) Geochemistry and petrology of listvenite in the Samail ophiolite, Sultanate of Oman: complete carbonation of peridotite during ophiolite emplacement. Geochim Cosmochim Acta 160:70–90. doi:10.1016/j.gca.2015.03.014

    Article  Google Scholar 

  50. Rudge JF, Kelemen PB, Spiegelman M (2010) A simple model of reaction-induced cracking applied to serpentinization and carbonation of peridotite. Earth Planet Sci Lett 291:215–227. doi:10.1016/j.epsl.2010.01.016

    Article  Google Scholar 

  51. Dessert C, Dupré B, Gaillardet J et al (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol 202:257–273. doi:10.1016/j.chemgeo.2002.10.001

    Article  Google Scholar 

  52. Goldberg DS, Takahashi T, Slagle AL (2008) Carbon dioxide sequestration in deep-sea basalt. Proc Natl Acad Sci U S A 105:9920–9925. doi:10.1073/pnas.0804397105

    Article  Google Scholar 

  53. Snæbjörnsdóttir SÓ, Wiese F, Fridriksson T et al (2014) CO2 storage potential of basaltic rocks in Iceland and the oceanic ridges. Energy Procedia 63:4585–4600. doi:10.1016/j.egypro.2014.11.491

    Article  Google Scholar 

  54. Flaathen TK, Gislason SR, Oelkers EH, Sveinbjörnsdóttir ÁE (2009) Chemical evolution of the Mt. Hekla, Iceland, groundwaters: a natural analogue for CO2 sequestration in basaltic rocks. Appl Geochem 24:463–474. doi:10.1016/j.apgeochem.2008.12.031

    Article  Google Scholar 

  55. Galeczka I, Wolff-Boenisch D, Gislason S (2013) Experimental studies of basalt-H2O-CO2 interaction with a high pressure column flow reactor: the mobility of metals. Energy Procedia 37:5823–5833. doi:10.1016/j.egypro.2013.06.505

    Article  Google Scholar 

  56. Alfredsson HA, Oelkers EH, Hardarsson BS et al (2013) The geology and water chemistry of the Hellisheidi, SW-Iceland carbon storage site. Int J Greenhouse Gas Control 12:399–418. doi:10.1016/j.ijggc.2012.11.019

    Article  Google Scholar 

  57. Alfredsson HA, Hardarson BS, Franzson H, Gislason SR (2008) CO2 sequestration in basaltic rock at the Hellisheidi site in SW Iceland: stratigraphy and chemical composition of the rocks at the injection site. Mineral Mag 72:1–5. doi:10.1180/minmag.2008.072.1.1

    Article  Google Scholar 

  58. Schaef HT, McGrail BP, Owen AT (2010) Carbonate mineralization of volcanic province basalts. Int J Greenh Gas Control 4:249–261. doi:10.1016/j.ijggc.2009.10.009

    Article  Google Scholar 

  59. Schaef HT, McGrail BP, Owen AT (2011) Basalt reactivity variability with reservoir depth in supercritical CO2 and aqueous phases. Energy Procedia 4:4977–4984. doi:10.1016/j.egypro.2011.02.468

    Article  Google Scholar 

  60. Galeczka I, Wolff-Boenisch D, Oelkers EH, Gislason SR (2014) An experimental study of basaltic glass–H2O–CO2 interaction at 22 and 50 °C: implications for subsurface storage of CO2. Geochim Cosmochim Acta 126:123–145. doi:10.1016/j.gca.2013.10.044

    Article  Google Scholar 

  61. Rani N, Pathak V, Shrivastava JP (2013) CO2 mineral trapping: an experimental study on the carbonation of basalts from the Eastern Deccan Volcanic Province, India. Procedia Earth Planet Sci 7:806–809. doi:10.1016/j.proeps.2013.03.069

    Article  Google Scholar 

  62. Bacon DH, Ramanathan R, Schaef HT, McGrail BP (2014) Simulating geologic co-sequestration of carbon dioxide and hydrogen sulfide in a basalt formation. Int J Greenhouse Gas Control 21:165–176. doi:10.1016/j.ijggc.2013.12.012

    Article  Google Scholar 

  63. Stockmann G, Wolff-Boenisch D, Gíslason SR, Oelkers EH (2008) Dissolution of diopside and basaltic glass: the effect of carbonate coating. Mineral Mag 72:135–139. doi:10.1180/minmag.2008.072.1.135

    Article  Google Scholar 

  64. Aradóttir ESP, Sonnenthal EL, Björnsson G, Jónsson H (2012) Multidimensional reactive transport modeling of CO2 mineral sequestration in basalts at the Hellisheidi geothermal field, Iceland. Int J Greenh Gas Control 9:24–40. doi:10.1016/j.ijggc.2012.02.006

    Article  Google Scholar 

  65. Gysi AP, Stefánsson A (2012) Experiments and geochemical modeling of CO2 sequestration during hydrothermal basalt alteration. Chem Geol 306–307:10–28. doi:10.1016/j.chemgeo.2012.02.016

    Article  Google Scholar 

  66. Gysi AP, Stefánsson A (2011) CO2–water–basalt interaction. Numerical simulation of low temperature CO2 sequestration into basalts. Geochim Cosmochim Acta 75:4728–4751. doi:10.1016/j.gca.2011.05.037

    Article  Google Scholar 

  67. Gysi AP, Stefánsson A (2008) Numerical modelling of CO2-water-basalt interaction. Mineral Mag 72:55–59. doi:10.1180/minmag.2008.072.1.55

    Article  Google Scholar 

  68. Gysi AP, Stefánsson A (2012) CO2-water–basalt interaction. Low temperature experiments and implications for CO2 sequestration into basalts. Geochim Cosmochim Acta 81:129–152. doi:10.1016/j.gca.2011.12.012

    Article  Google Scholar 

  69. Aradóttir ESP, Sonnenthal EL, Jónsson H (2012) Development and evaluation of a thermodynamic dataset for phases of interest in CO2 mineral sequestration in basaltic rocks. Chem Geol 304–305:26–38. doi:10.1016/j.chemgeo.2012.01.031

    Article  Google Scholar 

  70. Gislason SR, Wolff-Boenisch D, Stefansson A et al (2010) Mineral sequestration of carbon dioxide in basalt: a pre-injection overview of the CarbFix project. Int J Greenh Gas Control 4:537–545. doi:10.1016/j.ijggc.2009.11.013

    Article  Google Scholar 

  71. Matter JM, Stute M, Hall J et al (2014) Monitoring permanent CO2 storage by in situ mineral carbonation using a reactive tracer technique. Energy Procedia 63:4180–4185. doi:10.1016/j.egypro.2014.11.450

    Article  Google Scholar 

  72. McGrail BP, Spane FA, Amonette JE et al (2014) Injection and monitoring at the wallula basalt pilot project. Energy Procedia 63:2939–2948. doi:10.1016/j.egypro.2014.11.316

    Article  Google Scholar 

  73. Rutqvist J, Tsang C-F (2002) A study of caprock hydromechanical changes associated with CO2-injection into a brine formation. Environ Geol 42:296–305. doi:10.1007/s00254-001-0499-2

    Article  Google Scholar 

  74. Rutqvist J, Birkholzer JT, Tsang C-F (2008) Coupled reservoir–geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir–caprock systems. Int J Rock Mech Min Sci 45:132–143. doi:10.1016/j.ijrmms.2007.04.006

    Article  Google Scholar 

  75. Zoback MD, Gorelick SM (2012) Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc Natl Acad Sci 109:10164–10168. doi:10.1073/pnas.1202473109

    Article  Google Scholar 

  76. Yarushina VM, Bercovici D (2013) Mineral carbon sequestration and induced seismicity. Geophys Res Lett 40:814–818. doi:10.1002/grl.50196

    Article  Google Scholar 

  77. Kelemen PB, Hirth G (2012) Reaction-driven cracking during retrograde metamorphism: olivine hydration and carbonation. Earth Planet Sci Lett 345–348:81–89. doi:10.1016/j.epsl.2012.06.018

    Article  Google Scholar 

  78. Page BM (1972) Oceanic crust and mantle fragment in subduction complex near San Luis Obispo, California. Bull Geol Soc Am 83:957–972. doi:10.1130/0016-7606(1972)83[957:OCAMFI]2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dana Thomas (Stanford University) for furnishing basalt photographs and SEM images, and Anna Harrison (Stanford University) for insightful revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo García del Real .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

García del Real, P., Vishal, V. (2016). Mineral Carbonation in Ultramafic and Basaltic Rocks. In: Vishal, V., Singh, T. (eds) Geologic Carbon Sequestration. Springer, Cham. https://doi.org/10.1007/978-3-319-27019-7_11

Download citation

Publish with us

Policies and ethics