Skip to main content

Prediction of Structure and Phase Transformations

  • Chapter
  • First Online:
High-Entropy Alloys

Abstract

This chapter introduces calculational methods that can be used for ab initio structure prediction in multicomponent alloy systems, with an emphasis on concepts relevant to high-entropy alloys. Specifically, we will address density functional-based calculation of T = 0 K total energies. Extension to finite temperature will use cluster expansions for the energies to obtain the chemical substitution entropy that characterizes the high-entropy alloy family. Additional contributions such as vibrational and electronic entropies will be included as needed. We describe molecular dynamics and Monte Carlo simulation methods and the types of information that can be obtained from them. Example applications include three high-entropy alloy families, Cr-Mo-Nb-V, Nb-Ti-V-Zr, and Mo-Nb-Ta-W, and their binary and ternary subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann H, Inden G, Kikuchi R (1989) Tetrahedron approximation of the cluster variation method for B.C.C. alloys. Acta Metall 37:1–7

    Article  Google Scholar 

  2. Antolin N, Restrepo OD, Windl W (2012) Fast free-energy calculations for unstable high-temperature phases. Phys Rev B 86:054119

    Article  Google Scholar 

  3. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  4. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569

    Article  Google Scholar 

  5. DeHoff R (2006) Thermodynamics in materials science. CRC Press, Hoboken

    Google Scholar 

  6. Ducastelle F (1991) Order and phase stability in alloys. Elsevier, Amsterdam/New York

    Google Scholar 

  7. Errea I, Calandra M, Mauri F (2014) Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: application to platinum and palladium hydrides. Phys Rev B 89:064302

    Article  Google Scholar 

  8. de Fontaine D (1979) Configurational thermodynamics of solid solutions. In: Ehrenreich H, Turnbull D (eds) Solid state physics, vol 34. Academic, New York, pp 73–274

    Google Scholar 

  9. de Fontaine D (1994) Cluster approach to order-disorder transformations in alloys. In: Ehrenreich H, DTurnbull (eds) Solid state physics, vol 47. Academic, San Diego, pp 33–176

    Google Scholar 

  10. Gao M, Dogan O, King P, Rollett A, Widom M (2008) First principles design of ductile refractory alloys. J Metals 60:61–65

    Google Scholar 

  11. Gao M, Suzuki Y, Schweiger H, Dogan O, Hawk J, Widom M (2013) Phase stability and elastic properties of Cr-V alloys. J Phys Condens Matter 25:075402

    Article  Google Scholar 

  12. Glass CW, Oganov AR, Hansen N (2006) USPEX – evolutionary crystal structure prediction. Comput Phys Commun 175:713–720

    Article  Google Scholar 

  13. Goedecker S (2004) Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems. J Chem Phys 120:9911–9917

    Article  Google Scholar 

  14. Guggenheim EA (1944) Statistical thermodynamics of mixtures with non-zero energies of mixing. Proc R Soc Lond A 183:213–227

    Article  Google Scholar 

  15. Guo W, Dmowski W, Noh JY, Rack P, Liaw PK, Egami T (2013) Local atomic structure of a high-entropy alloy: an x-ray and neutron scattering study. Metall Mater Trans A 44:1994–1997

    Article  Google Scholar 

  16. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):864–871

    Article  Google Scholar 

  17. Huhn WP (2014) Thermodynamics from first principles: Prediction of phase diagrams and materials properties using density functional theory. PhD thesis, Carnegie Mellon University

    Google Scholar 

  18. Huhn WP, Widom M (2013) Prediction of A2 to B2 phase transition in the high entropy alloy MoNbTaW. JOM 65:1772–1779

    Article  Google Scholar 

  19. Jiang C (2009) First-principles study of ternary BCC alloys using special quasi-random structures. Acta Mater 57:4716–4726

    Article  Google Scholar 

  20. Jiang C, Wolverton C, Sofo J, Chen LQ, Liu ZK (2004) First-principles study of binary BCC alloys using special quasirandom structures. Phys Rev B 69:214202

    Article  Google Scholar 

  21. Kikuchi R (1974) Superposition approximation and natural iteration calculation in cluster variation method. J Chem Phys 60:1071–1080

    Article  Google Scholar 

  22. Kittel C (2005) Introduction to solid state physics. Wiley, Hoboken

    Google Scholar 

  23. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–1138

    Article  Google Scholar 

  24. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane- wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  25. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:RC558–RC561

    Article  Google Scholar 

  26. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  27. Kresse G, Furthmuller J, Hafner J (1995) Ab initio force constant approach to phonon dispersion relations of diamond and graphite. Europhys Lett 32:729–734

    Article  Google Scholar 

  28. Martin R (2008) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge

    Google Scholar 

  29. Mihalkovič M, Widom M (2004) Ab-initio cohesive energies of fe-based glass-forming alloys. Phys Rev B 70:144107

    Article  Google Scholar 

  30. Neyts EC, Bogaerts A (2013) Combining molecular dynamics with monte carlo simulations: implementations and applications. Theor Chem Acc 132:1–12

    Article  Google Scholar 

  31. NIST (2013) Janaf thermochemical tables. http://kinetics.nist.gov/janaf

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  33. Ravi C, Panigrahi BK, Valsakumar MC, van de Walle A (2012) First-principles calculation of phase equilibrium of V-Nb, V-Ta, and Nb-Ta alloys. Phys Rev B 85:054202

    Article  Google Scholar 

  34. Revard BC, Tipton WW, Hennig RG (2014) Structure and stability prediction of compounds with evolutionary algorithms. Top Curr Chem 345:181–222

    Article  Google Scholar 

  35. Senkov O, Senkova S, Woodward C, Miracle D (2013) Low-density, refractory multi-principal element alloys of the CrNbTiZr system: Microstructure and phase analysis. Acta Mater 61:1545–1557

    Article  Google Scholar 

  36. Senkova O, Wilks G, Miracle D, Chuang C, Liaw P (2010) Refractory high-entropy alloys. Intermetallics 18:1758–1765

    Article  Google Scholar 

  37. Smith JF, Carlson ON (1990) Nb-V (niobium-vanadium). In: Massalski TB (ed) Binary alloy phase diagrams, 2nd edn. ASM, Materials Park, pp 2779–2782

    Google Scholar 

  38. Takasugi T, Yoshida M, Hanada S (1995) Microstructure and high-temperature deformation of the c15 NbCr2-based laves intermetallics in Nb-Cr-V alloy system. J Mat Res 10:2463–2470

    Article  Google Scholar 

  39. Turchi P, Drchal V, Kudrnovsky J, Colinet C, Kaufman L, Liu ZK (2005) Application of ab initio and CALPHAD thermodynamics to Mo-Ta-W alloys. Phys Rev B 71:094206

    Article  Google Scholar 

  40. Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101:5111–5116

    Article  Google Scholar 

  41. van de Walle A, Asta M (2002) Self-driven lattice-model monte carlo simulations of alloy thermodynamic properties and phase diagrams. Modelling Simul Mater Sci Eng 10:521

    Article  Google Scholar 

  42. van de Walle A, Ceder G (2002) Automating first-principles phase diagram calculations. J Phase Equil 23:348

    Article  Google Scholar 

  43. Widom M, Mihalkovic M (2008) Symmetry-broken crystal structure of elemental boron at low temperature. Phys Rev B 77:064113

    Article  Google Scholar 

  44. Widom M, Huhn W, Maiti S, Steurer W (2013) Hybrid monte carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Mat Met Trans A 45:196–200

    Article  Google Scholar 

  45. Zunger A (1994) First principles statistical mechanics of semiconductor alloys and intermetallic compounds. In: Turchi PE, Gonis A (eds) NATO ASI on statics and dynamics of alloy phase transformation, vol 319. Plenum, New York, p 361–419

    Chapter  Google Scholar 

  46. Zunger A, Wei SH, Ferreira LG, Bernard JE (1990) Special quasirandom structures. Phys Rev Lett 65:353–356

    Article  Google Scholar 

Download references

Acknowledgements

M.W. thanks Will Huhn, Michael C. Gao, Axel van de Walle, Walter Steurer, Volker Blum, Peter Liaw, Malcolm Stocks and Takeshi Egami for useful discussions. M.W. acknowledges financial support from the DOE under grant DE-SC0014506.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Widom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Âİ 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Widom, M. (2016). Prediction of Structure and Phase Transformations. In: Gao, M., Yeh, JW., Liaw, P., Zhang, Y. (eds) High-Entropy Alloys. Springer, Cham. https://doi.org/10.1007/978-3-319-27013-5_8

Download citation

Publish with us

Policies and ethics