Skip to main content

Potential Applications and Prospects

  • Chapter
  • First Online:
High-Entropy Alloys

Abstract

High-entropy alloys (HEAs) inherently have four core effects that enable improvement in microstructure and properties. During the course of research on HEAs, other special materials, such as high-entropy (HE) superalloys, HE refractory alloys, HE bulk metallic glasses, HE carbides, HE nitrides, and HE oxides, have also been developed. All these materials have promising potential applications, e.g., in fabricating machine components, dies and molds, corrosion-resistant parts, cutting tools, functional coatings, hard-facing, thin-film resistors, diffusion barriers, and high-temperature structural components. Greater understanding of the basic science, accumulated knowledge and experience, and effective simulation and modeling will lead to the successful development of numerous HE materials with better properties in the future. This chapter first addresses several important high-entropy materials with promising potential applications and finally forecasts the trends and prospects in their research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sims CT, Stoloff NS, Hagel WC (1987) Superalloys II. Wiley, New York

    Google Scholar 

  2. Reed RC (2006) The superalloys: fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Reed RC, Tao T, Warnken N (2009) Alloys-by-design: application to nickel-based single crystal superalloys. Acta Mater 57:5898–5913

    Article  Google Scholar 

  4. Walston S, Cetel A, MacKay R, O’Hara KS, Duhl D, Dreshfield R (2004) Joint development of a fourth generation single crystal superalloy. In: Green KA (ed) Proceedings of Superalloys 2004, (The 10th international symposium on superalloys, champion, Pennsylvania, USA). TMS (The Minerals, Metals & Materials Society), pp 15–24

    Google Scholar 

  5. Zhang JX, Murakumo T, Koizumi Y, Kobayashi T, Harada H, Masaki S (2002) Interfacial dislocation networks strengthening a fourth-generation single-crystal TMS138 superalloy. Metall Mater Trans A 33:3741–3746

    Article  Google Scholar 

  6. Frasier DJ, Whetstone JR, Harris K, Erickson GL, Schwer RE (1990) Process and alloy optimization for CMSX-4 superalloy single crystal airfoil. In: High temperature materials for power engineering. Kluwer, Dordrecht, pp 1281–1300

    Google Scholar 

  7. Reed RC, Yeh AC, Tin S, Babu SS, Miller MK (2004) Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography. Scr Mater 51:327–331

    Article  Google Scholar 

  8. Yeh AC, Tin S (2005) Effects of Ru and Re additions on the high temperature flow stresses of Ni-base single crystal superalloys. Scr Mater 52:519–524

    Article  Google Scholar 

  9. Yeh AC, Tin S (2006) Effects of Ru on the high-temperature phase stability of Ni-base single-crystal superalloys. Metall Mater Trans A 37:2621–2631

    Article  Google Scholar 

  10. Yeh AC, Sato A, Kobayashi T, Harada H (2008) On the creep and phase stability of advanced Ni-base single crystal superalloys. Mater Sci Eng A 490:445–451

    Article  Google Scholar 

  11. Kawagishi K, Sato A, Harada H, Yeh AC, Koizumi Y, Kobayashi T (2009) Oxidation resistant Ru containing Ni base single crystal superalloys. Mater Sci Technol 25:271–275

    Article  Google Scholar 

  12. Kawagishi K, Yeh AC, Yokokawa T, Kobayashi T, Koizumi Y, Harada H (2012) Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238. In: Huron ES (ed) Proceedings of Superalloys 2012 (The 12th international symposium on superalloys). Wiley, New York, pp 189–195

    Google Scholar 

  13. Yeh AC, Chang YJ, Tsai CW, Wang YC, Yeh JW, Kuo CM (2014) On the solidification and phase stability of a Co-Cr-Fe-Ni-Ti high-entropy alloy. Metall Mater Trans A 45:184–190

    Article  Google Scholar 

  14. Azadian S, Wei LY, Warren R (2004) Delta phase precipitation in Inconel 718. Mater Charact 53:7–16

    Article  Google Scholar 

  15. Smith GD, Patel SJ (2005) The role of niobium in wrought precipitation-hardened nickel-base alloys. In: Loria EA (ed) Proceedings of The 6th international superalloys symposium: superalloys 718, 625, 706 and derivatives 2005, champion, Pennsylvania, USA. TMS, pp 135–154

    Google Scholar 

  16. Shibata T, Shudo Y, Yoshino Y (1996) Effects of aluminum, titanium and niobium on the time-temperature-precipitation behavior of alloy 706. In: Kissinger RD (ed) Proceedings of superalloys 1996 (The 8th international symposium on superalloys, champion, Pennsylvania, USA). TMS, pp 153–162

    Google Scholar 

  17. Yeh AC, Yang KC, Yeh JW, Kuo CM (2014) Developing an advanced Si-bearing DS Ni-base superalloy. J Alloys Compd 585:614–621

    Article  Google Scholar 

  18. Chang YJ, Yeh JW, Yeh AC (2014) High-entropy superalloys. Doctoral thesis in progress, National Tsing Hua University, Taiwan

    Google Scholar 

  19. Tsao TK, Yeh JW (2014) On high entropy effect and sluggish diffusion effect of high-entropy alloys. Doctoral thesis, National Tsing Hua University, Taiwan

    Google Scholar 

  20. Hobbs RA, Tin S, Rae CMF (2005) A castability model based on elemental solid–liquid partitioning in advanced nickel-base single-crystal superalloys. Metall Mater Trans A 36:2761–2773

    Article  Google Scholar 

  21. Wills VA, McCartney DG (1991) A comparative study of solidification features in nickel-base superalloys: microstructural evolution and microsegregation. Mater Sci Eng A 145:223–232

    Article  Google Scholar 

  22. Tin S, Pollock TM (2004) Predicting freckle formation in single crystal Ni-base superalloys. J Mater Sci 39:7199–7205

    Article  Google Scholar 

  23. Webster GA, Sullivan CP (1967) Some of temperature cycling on the creep behaviour of nickel-base alloy. J Inst Met 95:138–142

    Google Scholar 

  24. Tien JK, Gamble RP (1972) Effects of stress coarsening on coherent particle strengthening. Metall Trans 3:2157–2162

    Article  Google Scholar 

  25. Mackay RA, Ebert LJ (1983) The development of directional coarsening of the γ′ precipitate in superalloy single crystals. Scr Mater 17:1217–1222

    Google Scholar 

  26. Ichitsubo T, Koumoto D, Hirao M, Tanaka K, Osawa M, Yokohawa T, Harada H (2003) Rafting mechanism for Ni-base superalloy under external stress: elastic or elastic-plastic phenomena? Acta Mater 51:4033–4044

    Article  Google Scholar 

  27. Serin K, Gobenli G, Eggeler G (2004) On the influence of stress state, stress level and temperature on γ-channel widening in the single crystal superalloy CMSX-4. Mater Sci Eng A 387:133–137

    Article  Google Scholar 

  28. Nabarro FRN, Cress CM, Kotschy P (1996) The thermodynamic driving force for rafting in superalloys. Acta Mater 44:3189–3198

    Article  Google Scholar 

  29. Nabarro FRN (1996) Rafting in superalloys. Metall Mater Trans A 27:513–530

    Article  Google Scholar 

  30. Laberge CA, Fratzl P, Lebowitz JL (1997) Microscopic model for directional coarsening of precipitates in alloys under external load. Acta Mater 45:3949–3962

    Article  Google Scholar 

  31. Svoboda J, Lukas P (1996) Modelling of kinetics of directional coarsening in Ni-superalloys. Acta Mater 44:2557–2565

    Article  Google Scholar 

  32. Tien JK, Copley SM (1971) The effect of orientation and sense of applied uniaxial stress on the morphology of coherent gamma prime precipitates in stress annealed nickel-base superalloy crystals. Metall Trans 2:543–553

    Article  Google Scholar 

  33. Zhang JX, Wang JC, Harada H, Koizumi Y (2005) The effect of lattice misfit on the dislocation motion in superalloys during high-temperature Low-stress creep. Acta Mater 53:4623–4633

    Article  Google Scholar 

  34. Zhang JX, Murakumo T, Harada H, Koizumi Y (2003) Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138. Scr Mater 48:287–293

    Article  Google Scholar 

  35. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) Refractory high-entropy alloys. Intermetallics 18:1758–1765

    Article  Google Scholar 

  36. Senkov ON, Wilks GB, Scott JM, Miracle DB (2011) Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19:698–706

    Article  Google Scholar 

  37. Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF (2011) Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd 509:6043–6048

    Article  Google Scholar 

  38. Zhu G, Liu Y, Ye JW (2014) Early high-temperature oxidation behavior of Ti(C, N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. Int J Refract Met Hard Mater 44:35–41

    Article  Google Scholar 

  39. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93

    Article  Google Scholar 

  40. Couzinié JP, Dirras G, Perrière L, Chauveau T, Leroy E, Champion Y, Guillot I (2014) Microstructure of a near-equimolar refractory high-entropy alloy. Mater Lett 126:285–287

    Article  Google Scholar 

  41. Senkov ON, Scott JM, Senkova SV, Meisenkothen F, Miracle DB, Woodward CF (2012) Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci 47:4062–4074

    Article  Google Scholar 

  42. Senkov ON, Senkova S, Miracle DB, Woodward C (2013) Mechanical properties of Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system. Mater Sci Eng A 565:51–62

    Article  Google Scholar 

  43. Senkov ON, Senkova S, Woodward C, Miracle DB (2013) Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: microstructure and phase analysis. Acta Mater 61:1545–1557

    Article  Google Scholar 

  44. Yang X, Zhang Y, Liaw PK (2012) Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Procedia Eng 36:292–298

    Article  Google Scholar 

  45. Senkov ON, Senkova SV, Woodward C (2014) Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater 68:214–228

    Article  Google Scholar 

  46. Senkov ON, Woodward C, Miracle DB (2014) Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM 66:2030–2042

    Article  Google Scholar 

  47. Zhang B, Gao MC, Zhang Y, Yang S, Guo SM (2015) Senary refractory high-entropy alloy MoNbTaTiVW. Mater Sci Tech 31:1207–1213

    Google Scholar 

  48. Chen CS, Yang CC, Chai HY, Yeh JW, Chau JLH (2014) Novel cermet material of WC/multi-element alloy. Int J Refract Hard Met 43:200–204

    Article  Google Scholar 

  49. Lin CM, Tsai CW, Huang SM, Yang CC, Yeh JW (2014) New TiC/Co1.5CrFeNi1.5Ti0.5 cermet with slow TiC coarsening during sintering. JOM 66:2050–2056

    Article  Google Scholar 

  50. Chou YL, Yeh JW, Shih HC (2011) Effect of molybdenum on the pitting resistance of Co1.5CrFeNi1.5Ti0.5Mox alloys in chloride solutions. Corrosion 67:085002

    Google Scholar 

  51. Chuang MH, Tsai MH, Wang WR, Lin SJ, Yeh JW (2011) Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater 59:6308–6317

    Article  Google Scholar 

  52. Huang PK, Yeh JW, Shun TT, Chen SK (2004) Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv Eng Mater 6:74–78

    Article  Google Scholar 

  53. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303

    Article  Google Scholar 

  54. Hsu CY, Yeh JW, Chen SK, Shun TT (2004) Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall Mater Trans A 35:1465–1469

    Article  Google Scholar 

  55. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375–377:213–218

    Article  Google Scholar 

  56. Yeh JW, Chen SK, Gan JY, Lin SJ, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall Mater Trans A 35:2533–2536

    Article  Google Scholar 

  57. Chen TK, Shun TT, Yeh JW, Wong MS (2004) Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Technol 188–189:193–200

    Article  Google Scholar 

  58. Lai CH, Lin SJ, Yeh JW, Chang SY (2006) Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surf Coat Technol 201:3275–3280

    Article  Google Scholar 

  59. Lai CH, Lin SJ, Yeh JW, Davison A (2006) Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings. J Phys D Appl Phys 39:4628–4633

    Article  Google Scholar 

  60. Huang PK, Yeh JW (2010) Inhibition of grain coarsening up to 1000°C in (AlCrNbSiTiV)N superhard coatings. Scr Mater 62:105–118

    Article  Google Scholar 

  61. Huang PK, Yeh JW (2009) On high-entropy alloy and nitride coatings sputtered from AlCrNbSiTiV target. Doctoral thesis, National Tsing Hua University, Taiwan

    Google Scholar 

  62. Chang SY, Chen MK, Chen DS (2009) Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization. J Electrochem Soc 156:G37–G42

    Article  Google Scholar 

  63. Kaloyeros AE, Eisenbraun E (2000) Ultrathin diffusion barriers/liners for gigascale copper metallization. Annu Rev Mater Sci 30:363–385

    Article  Google Scholar 

  64. Kouno T, Niwa H, Yamada M (1998) Effect of TiN microstructure on diffusion barrier properties in Cu metallization. J Electrochem Soc 145:2164–2167

    Article  Google Scholar 

  65. Alén P, Ritala M, Arstila K, Keinonen J, Leskelä M (2005) Atomic layer deposition of molybdenum nitride thin films for Cu metallizations. J Electrochem Soc 152:G361–G366

    Article  Google Scholar 

  66. Kwon SH, Kwon OK, Min JS, Kang SW (2006) Plasma-enhanced atomic layer deposition of Ru-TiN thin films for copper diffusion barrier metals. J Electrochem Soc 153:G578–G584

    Article  Google Scholar 

  67. Chen CW, Chen JS, Jeng JS (2008) Improvement on the diffusion barrier performance of reactively sputtered Ru-N film by incorporation of Ta. J Electrochem Soc 155:H438–H442

    Article  Google Scholar 

  68. Fang JS, Lin JH, Chen BY, Chin TS (2011) Ultrathin Ru-Ta-C barriers for Cu metallization. J Electrochem Soc 158:H97–H102

    Article  Google Scholar 

  69. Leu LC, Norton DP, McElwee L, Anderson TJ (2008) Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects. Appl Phys Lett 92:111917

    Article  Google Scholar 

  70. Xie Q, Jiang YL, Musschoot J, Deduytsche D, Detavernier C, Vanmeirhaeghe R, Van den Berghe S, Ru GP, Li BZ, Qu XP (2009) Ru thin film grown on TaN by plasma enhanced atomic layer deposition. Thin Solid Films 517:4689–4693

    Article  Google Scholar 

  71. Kim SH, Kim HT, Yim SS, Lee DJ, Kim KS, Kim HM, Kim KB, Sohn HC (2008) A bilayer diffusion barrier of ALD-Ru/ALD-TaCN for direct plating of Cu. J Electrochem Soc 155:H589–H594

    Article  Google Scholar 

  72. Tsai MH, Wang CW, Tsai CW, Shen WJ, Yeh JW, Gan JY, Wu WW (2011) Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization. J Electrochem Soc 158:H1161–H1165

    Article  Google Scholar 

  73. Chang SY, Wang CY, Chen MK, Li CE (2011) Ru incorporation on marked enhancement of diffusion resistance of multi-component alloy barrier layers. J Alloy Compd 509:L85–L89

    Article  Google Scholar 

  74. Chang SY, Chen DS (2009) 10 nm-thick quinary (AlCrTaTiZr)N film as effective diffusion barrier for Cu interconnects at 900°C. Appl Phys Lett 94:231909

    Article  Google Scholar 

  75. Chang SY, Wang CY, Li CE, Huang YC (2011) 5 nm-thick (AlCrTaTiZrRu)N0.5 multi-component barrier layer with high diffusion resistance for Cu interconnects. Nanosci Nanotechnol Lett 3:289–293

    Article  Google Scholar 

  76. Chang SY, Chen DS (2010) Ultrathin (AlCrTaTiZr) Nx/AlCrTaTiZr bilayer structures with high diffusion resistance for Cu interconnects. J Electrochem Soc 157:G154–G159

    Article  Google Scholar 

  77. Chang SY, Li CE, Chiang SC, Huang YC (2012) 4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects. J Alloy Compd 515:4–7

    Article  Google Scholar 

  78. Chang SY, Li CE, Huang YC, Hsu HF, Yeh JW, Lin SJ (2014) Structural and thermodynamic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials. Sci Rep 4:4162

    Google Scholar 

  79. Egami T, Guo W, Rack PD, Nagase T (2014) Irradiation resistance of multicomponent alloys. Metall Mater Trans A 45:180–183

    Article  Google Scholar 

  80. Nagase T, Anada S, Rack PD, Noh JH, Yasuda H, Mori H, Egami T (2013) MeV electron-irradiation-induced structural change in the BCC phase of Zr–Hf–Nb alloy with an approximately equiatomic ratio. Intermetallics 38:70–79

    Article  Google Scholar 

  81. Nagase T, Rack PD, Noh JH, Egami T (2015) In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent High-Entropy Alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics 59:32–42

    Article  Google Scholar 

  82. Otto F, Yang Y, Bei H, George EP (2013) Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater 61:2628–2638

    Article  Google Scholar 

  83. Tsai KY, Tsai MH, Yeh JW (2013) Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater 61:4887–4897

    Article  Google Scholar 

  84. Otto F, Dlouhy A, Somsen C, Bei H, Eggeler G, George EP (2013) The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater 61:5743–5755

    Article  Google Scholar 

  85. Feuerbacher M, Heidelmann M, Thomas C (2015) Hexagonal high-entropy alloys. Mater Res Lett 3:1–6

    Article  Google Scholar 

  86. Gao MC, Alman DE (2013) Searching for next single-phase high-entropy alloy compositions. Entropy 15:4504–4519. doi:10.3390/e15104504

    Article  Google Scholar 

  87. Gao MC, Zhang B, Guo SM, Qiao JW, Hawk JA (2015) High-entropy alloys in hexagonal close-packed structure. Metall Mater Trans A, doi: 10.1007/s11661-015-3091-1

    Google Scholar 

Download references

Acknowledgment

J.W.Y, A.C.Y, and S.Y.C. would like to thank Dr. Michael C. Gao for his patience to provide review comments and suggestions from himself and invited experts. They also acknowledge all the financial supports from the Ministry of Science and Technology, Ministry of Economic Affairs, and National Tsing Hua University, R.O.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jien-Wei Yeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yeh, JW., Yeh, AC., Chang, SY. (2016). Potential Applications and Prospects. In: Gao, M., Yeh, JW., Liaw, P., Zhang, Y. (eds) High-Entropy Alloys. Springer, Cham. https://doi.org/10.1007/978-3-319-27013-5_15

Download citation

Publish with us

Policies and ethics