Skip to main content

High-Entropy Metallic Glasses

  • Chapter
  • First Online:
High-Entropy Alloys

Abstract

This chapter applies the concept of high entropy to metallic glasses (MGs), in particular, to those in a bulk shape: bulk metallic glasses (BMGs). The resultant target materials in this chapter are mainly high-entropy bulk metallic glasses (HE-BMGs), which have recently been developed as alloys with characteristics of both high-entropy alloys (HEAs) and BMGs. The contents in this chapter start by introducing historic background of HE-BMGs and by summarizing the differences between HEAs and BMGs. Then, the fundamental properties of representative HE-BMGs found to date are described mainly in terms of thermodynamic and mechanical behaviors. Besides the experiments, the latest computational approach for clarifying the features of HE-BMGs is described based on the results using ab initio molecular dynamics simulations for the atomic structure, chemical interaction, and diffusivity in this unique class of materials. The current status and future prospects of the HE-BMGs by utilizing their unique features are outlined for their future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303. doi:10.1002/adem.200300567

    Article  Google Scholar 

  2. Yeh JW (2006) Recent progress in high-entropy alloys. Annales De Chimie-Science Des Materiaux 31(6):633–648. doi:10.3166/acsm.31.633-648

    Article  Google Scholar 

  3. Inoue A, Takeuchi A (2011) Recent development and application products of bulk glassy alloys. Acta Mater 59(6):2243–2267. doi:10.1016/j.actamat.2010.11.027

    Article  Google Scholar 

  4. Murty BS, Yeh J-W, Ranganathan S (2014) High-entropy alloys. Butterworth-Heinemann, London

    Book  Google Scholar 

  5. Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W (2014) High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 66(10):1984–1992. doi:10.1007/s11837-014-1085-x

    Article  Google Scholar 

  6. Feuerbacher M, Heidelmann M, Thomas C (2015) Hexagonal high-entropy alloys. Mater Res Lett 3(1):1–6. doi:10.1080/21663831.2014.951493

    Article  Google Scholar 

  7. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93. doi:10.1016/j.pmatsci.2013.10.001

    Article  Google Scholar 

  8. Gao MC, Alman DE (2013) Searching for next single-phase high-entropy alloy compositions. Entropy 15:4504–4519. doi:10.3390/e15104504

    Article  Google Scholar 

  9. Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46(12):2817–2829. doi:10.2320/matertrans.46.2817

    Article  Google Scholar 

  10. Ma LQ, Wang LM, Zhang T, Inoue A (2002) Bulk glass formation of Ti-Zr-Hf-Cu-M (M = Fe, Co, Ni) alloys. Mater Trans 43(2):277–280. doi:10.2320/matertrans.43.277

    Article  Google Scholar 

  11. Greer AL (1993) Materials science – confusion by design. Nature 366(6453):303–304. doi:10.1038/366303a0

    Article  Google Scholar 

  12. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A Struct Mater Proper Microstruct Proc 375:213–218. doi:10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  13. Zhao K, Xia XX, Bai HY, Zhao DQ, Wang WH (2011) Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature. Appl Phys Lett 98(14):141913-1–141913-3. doi:10.1063/1.3575562

    Google Scholar 

  14. Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh JW (2011) Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics 19(10):1546–1554. doi:10.1016/j.intermet.2011.05.030

    Article  Google Scholar 

  15. Gao XQ, Zhao K, Ke HB, Ding DW, Wang WH, Bai HY (2011) High mixing entropy bulk metallic glasses. J Non Cryst Solids 357(21):3557–3560. doi:10.1016/j.jnoncrysol.2011.07.016

    Article  Google Scholar 

  16. Li HF, Xie XH, Zhao K, Wang YB, Zheng YF, Wang WH, Qin L (2013) In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Acta Biomater 9(10):8561–8573. doi:10.1016/j.actbio.2013.01.029

    Article  Google Scholar 

  17. Ding HY, Yao KF (2013) High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass. J Non Cryst Solids 364:9–12. doi:10.1016/j.matlet.2014.03.185

    Article  Google Scholar 

  18. Ding HY, Shao Y, Gong P, Li JF, Yao KF (2014) A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability. Mater Lett 125:151–153. doi:10.1016/j.matlet.2014.03.185

    Article  Google Scholar 

  19. He Y, Schwarz RB, Archuleta JI (1996) Bulk glass formation in the Pd-Ni-P system. Appl Phys Lett 69(13):1861–1863. doi: 10.1063/1.117458

    Article  Google Scholar 

  20. Johnson WL (1996) Fundamental aspects of bulk metallic glass formation in multicomponent alloys. Metastab Mech Alloyed Nanocryst Mater Pts 1 and 2 225:35–49

    Google Scholar 

  21. Inoue A, Nishiyama N, Kimura H (1997) Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Mater Trans JIM 38(2):179–183. doi:10.2320/matertrans1989.38.179

    Article  Google Scholar 

  22. Nishiyama N, Takenaka K, Wada T, Kimura H, Inoue A (2005) Undercooling behavior and critical cooling rate of Pd-Pt-Cu-P alloy. Mater Trans 46(12):2807–2810. doi:10.2320/matertrans.46.2807

    Article  Google Scholar 

  23. Inoue A, Zhang T (1996) Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Mater Trans JIM 37(2):185–187. doi:10.2320/matertrans1989.37.185

    Article  Google Scholar 

  24. Zheng Q, Xu J, Ma E (2007) High glass-forming ability correlated with fragility of Mg-Cu(Ag)-Gd alloys. J Appl Phys 102(11):113519-1–113519-5. doi:10.1063/1.2821755

    Google Scholar 

  25. Ma H, Shi LL, Xu J, Li Y, Ma E (2005) Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl Phys Lett 87(18):181915-1–181915-3. doi:10.1063/1.2126794

    Google Scholar 

  26. Zhang W, Zhang QS, Qin CL, Inoue A (2008) Synthesis and properties of Cu-Zr-Ag-Al glassy alloys with high glass-forming ability. Mater Sci Eng B Adv Funct Solid State Mater 148(1–3):92–96. doi:10.1016/j.mseb.2007.09.064

    Article  Google Scholar 

  27. Guo FQ, Poon SJ, Shiflet GJ (2003) Metallic glass ingots based on yttrium. Appl Phys Lett 83(13):2575–2577. doi:10.1063/1.1614420

    Article  Google Scholar 

  28. Li R, Pang SJ, Ma CL, Zhang T (2007) Influence of similar atom substitution on glass formation in (La-Ce)-Al-Co bulk metallic glasses. Acta Mater 55(11):3719–3726. doi:10.1016/j.actamat.2007.02.026

    Article  Google Scholar 

  29. Jiang QK, Zhang GQ, Chen LY, Wu JZ, Zhang HG, Jiang JZ (2006) Glass formability, thermal stability and mechanical properties of La-based bulk metallic glasses. J Alloys Compd 424(1–2):183–186. doi:10.1016/j.jallcom.2006.07.109

    Article  Google Scholar 

  30. Xing LQ, Ochin P (1997) Bulk glass formation in the Zr-Ti-Al-Cu-Ni system. J Mater Sci Lett 16(15):1277–1280. doi:10.1023/A:1018574808365

    Article  Google Scholar 

  31. Schroers J, Johnson WL (2004) Highly processable bulk metallic glass-forming alloys in the Pt-Co-Ni-Cu-P system. Appl Phys Lett 84(18):3666–3668. doi:10.1063/1.1738945

    Article  Google Scholar 

  32. Amiya K, Inoue A (2008) Fe-(Cr, Mo)-(C, B)-Tm bulk metallic glasses with high strength and high glass-forming ability. Rev Adv Mater Sci 18(1):27–29

    Google Scholar 

  33. Park ES, Kim DH (2004) Formation of Ca-Mg-Zn bulk glassy alloy by casting into cone-shaped copper mold. J Mater Res 19(3):685–688. doi:10.1557/jmr.2004.19.3.685

    Article  Google Scholar 

  34. Busch R, Masuhr A, Bakke E, Johnson WL (1998) Bulk metallic glass formation from strong liquids. Mech Alloyed Metastab Nanocryst Mater Part 2 269(2):547–552

    Google Scholar 

  35. Zeng YQ, Nishiyama N, Yamamoto T, Inoue A (2009) Ni-rich bulk metallic glasses with high glass-forming ability and good metallic properties. Mater Trans 50(10):2441–2445. doi:10.2320/matertrans.MRA2008453

    Article  Google Scholar 

  36. Chen N, Yang HA, Caron A, Chen PC, Lin YC, Louzguine-Luzgin DV, Yao KF, Esashi M, Inoue A (2011) Glass-forming ability and thermoplastic formability of a Pd40Ni40Si4P16 glassy alloy. J Mater Sci 46(7):2091–2096. doi:10.1007/s10853-010-5043-x

    Article  Google Scholar 

  37. Inoue A, Zhang QS, Zhang W, Yubuta K, Son KS, Wang XM (2009) Formation, thermal stability and mechanical properties of bulk glassy alloys with a diameter of 20 mm in Zr-(Ti, Nb)-Al-Ni-Cu system. Mater Trans 50(2):388–394. doi:10.2320/matertrans.MER2008179

    Article  Google Scholar 

  38. Guo FQ, Wang HJ, Poon SJ, Shiflet GJ (2005) Ductile titanium-based glassy alloy ingots. Appl Phys Lett 86(9):091907-1–091907-3. doi:10.1063/1.1872214

    Google Scholar 

  39. Ponnambalam V, Poon SJ, Shiflet GJ (2004) Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J Mater Res 19(5):1320–1323. doi:10.1557/jmr.2004.0176

    Article  Google Scholar 

  40. Wang D, Li Y, Sun BB, Sui ML, Lu K, Ma E (2004) Bulk metallic glass formation in the binary Cu-Zr system. Appl Phys Lett 84(20): 4029–4031. doi:10.1063/1.1751219

    Google Scholar 

  41. Xu DH, Lohwongwatana B, Duan G, Johnson WL, Garland C (2004) Bulk metallic glass formation in binary Cu-rich alloy series - Cu100-xZrx (x=34, 36 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater 52(9):2621–2624. doi:10.1016/j.actamat.2004.02.009

    Google Scholar 

  42. Xia L, Li WH, Fang SS, Wei BC, Dong YD (2006) Binary Ni-Nb bulk metallic glasses. J Appl Phys 99(2). doi:10.1063/1.2158130

    Google Scholar 

  43. Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48(1):279–306. doi:10.1016/S1359-6454(99)00300-6

    Article  Google Scholar 

  44. Zhang Y, Zhou YJ, Lin JP, Chen GL, Liaw PK (2008) Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater 10(6):534–538. doi:10.1002/adem.200700240

    Article  Google Scholar 

  45. Yang X, Zhang Y (2012) Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 132(2–3):233–238. doi:10.1016/j.matchemphys.2011.11.021

    Article  Google Scholar 

  46. Saunders N, Miodownik AP, Dinsdale AT (1988) Metastable lattice stabilities for the elements. Calphad Comput Coupling Phase Diagrams Thermochem 12(4):351–374. doi:10.1016/0364-5916(88)90038-7

    Article  Google Scholar 

  47. de Boer FR, Boom R, Mattens WCM, Miedema AR, Nissen AK (1988) Cohesion in metals: transition metal alloys, vol 1, Cohesion and structure. North Holland Physics Publishing, a division of Elsevier Science Publishers B.V, The Netherlands

    Google Scholar 

  48. Hafner J (1980) Theory of the formation of metallic glasses. Phys Rev B 21(2):406–426. doi:10.1103/PhysRevB.21.406

    Article  Google Scholar 

  49. Masumoto T (1982) Present status and prospects of rapidly quenched metals. In: Masumoto T, Suzuki K (eds) The 4th international conference on rapidly quenched metals. The Japan Institute of Metals, Sendai, pp 1–5

    Google Scholar 

  50. Takeuchi A, Murty BS, Hasegawa M, Ranganathan S, Inoue A (2007) Analysis of bulk metallic glass formation using a tetrahedron composition diagram that consists of constituent classes based on blocks of elements in the periodic table. Mater Trans 48(6):1304–1312. doi:10.2320/matertrans.MF200604

    Article  Google Scholar 

  51. Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A (2014) Alloy designs of high-entropy crystalline and bulk glassy alloys by evaluating mixing enthalpy and delta parameter for quinary to decimal equi-atomic alloys. Mater Trans 55(1):165–170. doi:10.2320/matertrans.M2013352

    Article  Google Scholar 

  52. Inoue A, Zhang T, Masumoto T (1990) Production of amorphous cylinder and sheet of La55AL25Ni20 alloy by a metallic mold casting method. Mater Trans JIM 31(5):425–428. doi:10.2320/matertrans1989.31.425

    Article  Google Scholar 

  53. Inoue A, Shinohara Y, Gook JS (1995) Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting. Mater Trans JIM 36(12):1427–1433. doi:10.2320/matertrans1989.36.1427

    Article  Google Scholar 

  54. Inoue A, Zhang W, Zhang T, Kurosaka K (2001) High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater 49(14):2645–2652. doi:10.1016/S1359-6454(01)00181-1

    Article  Google Scholar 

  55. Inoue A, Zhang T, Masumoto T (1989) Al-La-Ni amorphous-alloys with a wide supercooled liquid region. Mater Trans JIM 30(12):965–972. doi:10.2320/matertrans1989.30.965

    Article  Google Scholar 

  56. Inoue A, Kohinata M, Tsai AP, Masumoto T (1989) Mg-Ni-La amorphous-alloys with a wide supercooled liquid region. Mater Trans JIM 30(5):378–381. doi:10.2320/matertrans1989.30.378

    Article  Google Scholar 

  57. Inoue A, Kato A, Zhang T, Kim SG, Masumoto T (1991) Mg-Cu-Y amorphous-alloys with high mechanical strengths produced by a metallic mold casting method. Mater Trans JIM 32(7):609–616. doi:10.2320/matertrans1989.32.609

    Article  Google Scholar 

  58. Kui HW, Greer AL, Turnbull D (1984) Formation of bulk metallic-glass by fluxing. Appl Phys Lett 45(6):615–616. doi:10.1063/1.95330

    Article  Google Scholar 

  59. Nishiyama N, Amiya K, Inoue A (2004) Bulk metallic glasses for industrial products. Mater Trans 45(4):1245–1250. Elsevier Ltd. (Published online) doi:10.2320/matertrans.45.1245

    Google Scholar 

  60. Suryanarayana C, Inoue A (2011) Bulk metallic glasses. CRC Press, Boca Raton

    Google Scholar 

  61. Takeuchi A, Chen N, Wada T, Zhang W, Yokoyama Y, Inoue A, Yeh JW (2011) Alloy design for high-entropy bulk glassy alloys. In: IUMRS international conference in Asia (Procedia Engineering). Procedia Engineering, pp 226–235. doi:10.1016/j.proeng.2012.03.035

    Google Scholar 

  62. Takeuchi A, Wang JQ, Chen N, Zhang W, Yokoyama Y, Yubuta K, Zhu SL (2013) Al0.5TiZrPdCuNi high-entropy (H-E) alloy developed through Ti20Zr20Pd20Cu20Ni20 H-E glassy alloy comprising inter-transition metals. Mater Trans 54(5):776–782. doi:10.2320/matertrans.M2012370

    Article  Google Scholar 

  63. Understanding Solids (2004) The science of materials. Wiley, West Sussex

    Google Scholar 

  64. Guo S, Ng C, Lu J, Liu CT (2011) Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys 109(10)103505-1–103505-5. doi:10.1063/1.3587228

    Google Scholar 

  65. Wang WH (2014) High-entropy metallic glasses. JOM. 66(10):2067–2077: doi:10.1007/s11837-014-1002-3

    Google Scholar 

  66. Chen HS (1980) Glassy metals. Rep Prog Phys 43(4):353–432. doi:10.1088/0034-4885/43/4/001

    Article  Google Scholar 

  67. Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A (2013) Entropies in alloy design for high-entropy and bulk glassy alloys. Entropy 15(9):3810–3821. doi:10.3390/e15093810

    Article  Google Scholar 

  68. Gao MC, Widom M (2015) On the structural, electronic, thermodynamic, and elastic properties of high-entropy metallic glasses: a first-principles study (Unpublished work)

    Google Scholar 

  69. Zhang Y, Zuo TT, Cheng YQ, Liaw PK (2013) High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci Rep 3:1455-1–1455-7. doi:10.1038/srep01455

Download references

Acknowledgments

A.T. acknowledges Japan Society for the Promotion of Science (JSPS) for financial support: Grants-in-Aid for Scientific Research (B) with a program title of “Fabrication of High-Entropy Bulk Metallic Glasses based on Confusion Principle, Clarification of their Properties and their Application” (grant number 24360284). M.C.G. acknowledges the financial support by the Cross-Cutting Technologies Program at the National Energy Technology Laboratory (NETL) – Strategic Center for Coal, managed by Robert Romanosky (Technology Manager) and Charles Miller (Technology Monitor). The Research was executed through NETL’s Office of Research and Development’s Innovative Process Technologies (IPT) Field Work Proposal under the RES contract DE-FE-0004000. M.W. acknowledges support from the DOE under grant DE-SC0014506.

Disclaimer This chapter co-authored by M.C.G. was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with AECOM. Neither the United States Government nor any agency thereof, nor any of their employees, nor AECOM, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Takeuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Takeuchi, A., Gao, M.C., Qiao, J., Widom, M. (2016). High-Entropy Metallic Glasses. In: Gao, M., Yeh, JW., Liaw, P., Zhang, Y. (eds) High-Entropy Alloys. Springer, Cham. https://doi.org/10.1007/978-3-319-27013-5_13

Download citation

Publish with us

Policies and ethics