Skip to main content

Action Recognition and Human Interaction

  • Chapter
  • First Online:
Human Activity Recognition and Prediction

Abstract

Recognizing human activities is a fundamental problem in the computer vision community and is a key step toward the automatic understanding of scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter, we use interactive phrases and phrases interchangeably.

  2. 2.

    Please refer to the supplemental material to see details about the connectivity patterns of interactive phrases and attributes.

References

  1. Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: a review. ACM Comput. Surv. 43(3), pp. 16:1–16:43. (2011)

    Google Scholar 

  2. Choi, W., Savarese, S.: A unified framework for multi-target tracking and collective activity recognition. In: European Conference on Computer Vision, pp. 215–230. Springer, Berlin (2012)

    Google Scholar 

  3. Choi, W., Shahid, K., Savarese, S.: Learning context for collective activity recognition. In: Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  4. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence tree. IEEE Trans. Inf. Theory 14(3), 462–467 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  5. Desai, C., Ramanan, D., Fowlkes, C.: Discriminative models for multi-class object layout. In: International Conference on Computer Vision (2009)

    Google Scholar 

  6. Desai, C., Ramanan, D., Fowlkes, C.: Discriminative models for static human-object interactions. In: Conference on Computer Vision and Pattern Recognition Workshop on Structured Models in Computer Vision (2010)

    Google Scholar 

  7. Do, T.-M.-T., Artieres, T.: Large margin training for hidden Markov models with partially observed states. In: International Conference on Machine Learning (2009)

    Google Scholar 

  8. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: Visual Surveillance and Performance Evaluation of Tracking and Surveillance (2005)

    Google Scholar 

  9. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: Conference on Computer Vision and Pattern Recognition, pp. 1778–1785. IEEE (2009)

    Google Scholar 

  10. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  11. Ferrari, V., Zisserman, A.: Learning visual attributes. In: Conference on Neural Information Processing Systems (2007)

    Google Scholar 

  12. Filipovych, R., Ribeiro, E.: Recognizing primitive interactions by exploring actor-object states. In: Conference on Computer Vision and Pattern Recognition, pp. 1–7. IEEE, New York (2008)

    Google Scholar 

  13. Gong, S., Xiang, T.: Recognition of group activities using dynamic probabilistic networks. In: International Conference on Computer Vision, vol. 2, pp. 742–749 (2003)

    Google Scholar 

  14. Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2247–2253 (2007)

    Google Scholar 

  15. Gupta, A., Davis, L.S.: Beyond nouns: exploiting prepositions and comparative adjectives for learning visual classifiers. In: European Conference on Computer Vision (2008)

    Google Scholar 

  16. Gupta, A., Kembhavi, A., Davis, L.S.: Observing human-object interactions: using spatial and functional compatibility for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(10), 1775–1789 (2009)

    Google Scholar 

  17. Kong, Y., Fu, Y.: Modeling supporting regions for close human interaction recognition. In: European Conference on Computer Vision Workshop (2014)

    Google Scholar 

  18. Kong, Y., Jia, Y., Fu, Y.: Learning human interaction by interactive phrases. In: European Conference on Computer Vision (2012)

    Google Scholar 

  19. Kong, Y., Jia, Y., Fu, Y.: Interactive phrases: semantic descriptions for human interaction recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1775–1788 (2014)

    Google Scholar 

  20. Kovashka, A., Grauman, K.: Learning a hierarchy of discriminative space-time neighborhood features for human action recognition. In: Conference on Computer Vision and Pattern Recognition, pp. 2046–2053. IEEE, New York (2010)

    Google Scholar 

  21. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning (2001)

    Google Scholar 

  22. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  23. Lan, T., Wang, Y., Yang, W., Mori, G.: Beyond actions: discriminative models for contextual group activities. In: Conference on Neural Information Processing Systems (2010)

    Google Scholar 

  24. Lan, T., Wang, Y., Yang, W., Robinovitch, S.N., Mori, G.: Discriminative latent models for recognizing contextual group activities. IEEE Trans. Pattern Anal. Mach. Intell. 34(8), 1549–1562 (2012)

    Google Scholar 

  25. Laptev, I., Marszałek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  26. Li, R., Chellappa, R., Zhou, S.K.: Learning multi-modal densities on discriminative temporal interaction manifold for group activity recognition. In: Conference on Computer Vision and Pattern Recognition, pp. 2450–2457 (2009)

    Google Scholar 

  27. Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from videos “in the wild”. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  28. Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In: Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  29. Marszałek, M., Laptev, I., Schmid, C.: Actions in context. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  30. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  31. Ni, B., Yan, S., Kassim, A.A.: Recognizing human group activities with localized causalities. In: Conference on Computer Vision and Pattern Recognition, pp. 1470–1477 (2009)

    Google Scholar 

  32. Niebles, J.C., Chen, C.-W., Fei-Fei, L.: Modeling temporal structure of decomposable motion segments for activity classification. In: European Conference on Computer Vision, vol. 6312 (2010)

    Google Scholar 

  33. Odashima, S., Shimosaka, M., Kaneko, T., Fuikui, R., Sato, T.: Collective activity localization with contextual spatial pyramid. In: European Conference on Computer Vision (2012)

    Google Scholar 

  34. Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)

    Google Scholar 

  35. Patron-Perez, A., Marszalek, M., Reid, I., Zissermann, A.: Structured learning of human interaction in tv shows. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2441–2453 (2012)

    Google Scholar 

  36. Raptis, M., Soatto, S.: Tracklet descriptors for action modeling and video analysis. In: European Conference on Computer Vision (2010)

    Google Scholar 

  37. Ryoo, M.S.: Human activity prediction: early recognition of ongoing activities from streaming videos. In: International Conference on Computer Vision (2011)

    Google Scholar 

  38. Ryoo, M.S., Aggarwal, J.K.: Recognition of composite human activities through context-free grammar based representation. In: Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1709–1718 (2006)

    Google Scholar 

  39. Ryoo, M.S., Aggarwal, J.K.: Spatio-temporal relationship match: video structure comparison for recognition of complex human activities. In: International Conference on Computer Vision, pp. 1593–1600 (2009)

    Google Scholar 

  40. Ryoo, M.S., Aggarwal, J.K.: UT-interaction dataset, ICPR contest on semantic description of human activities (SDHA) (2010). http://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html

  41. Ryoo, M., Aggarwal, J.: Stochastic representation and recognition of high-level group activities. Int. J. Comput. Vis. 93, 183–200 (2011)

    Google Scholar 

  42. Sadeghi, M.A., Farhadi, A.: Recognition using visual phrases. In: Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  43. Shechtman, E., Irani, M.: Space-time behavior based correlation. In: Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 405–412. IEEE (2005)

    Google Scholar 

  44. Taskar, B., Guestrin, C., Koller, D.: Max-margin Markov networks. In: Conference on Neural Information Processing Systems (2003)

    Google Scholar 

  45. Vahdat, A., Gao, B., Ranjbar, M., Mori, G.: A discriminative key pose sequence model for recognizing human interactions. In: International Conference on Computer Vision Workshops, pp. 1729–1736 (2011)

    Google Scholar 

  46. Wang, Y., Mori, G.: Max-margin hidden conditional random fields for human action recognition. In: Conference on Computer Vision and Pattern Recognition, pp. 872–879 (2009)

    Google Scholar 

  47. Wang, Y., Mori, G.: A discriminative latent model of object classes and attributes. In: European Conference on Computer Vision (2010)

    Google Scholar 

  48. Wang, Y., Mori, G.: Hidden part models for human action recognition: probabilistic vs. max-margin. IEEE Trans. Pattern Anal. Mach. Intell. vol 33, pp. 1310–1323. (2010)

    Google Scholar 

  49. Yao, B., Fei-Fei, L.: Modeling mutual context of object and human pose in human-object interaction activities. In: Conference on Computer Vision and Pattern Recognition, pp. 17–24 (2010)

    Google Scholar 

  50. Yao, B., Fei-Fei, L.: Recognizing human-object interactions in still images by modeling the mutual context of objects and human poses. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1691–1703 (2012)

    Google Scholar 

  51. Yu, T.-H., Kim, T.-K., Cipolla, R.: Real-time action recognition by spatiotemporal semantic and structural forests. In: British Machine Vision Conference (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kong, Y., Fu, Y. (2016). Action Recognition and Human Interaction. In: Fu, Y. (eds) Human Activity Recognition and Prediction. Springer, Cham. https://doi.org/10.1007/978-3-319-27004-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27004-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27002-9

  • Online ISBN: 978-3-319-27004-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics