Skip to main content

Remodeling of Calcium Entry Pathways in Cancer

  • Chapter
  • First Online:
Calcium Entry Pathways in Non-excitable Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 898))

Abstract

Ca2+ entry pathways play important roles in control of many cellular functions, including long-term proliferation, migration and cell death. In recent years, it is becoming increasingly clear that, in some types of tumors, remodeling of Ca2+ entry pathways could contribute to cancer hallmarks such as excessive proliferation, cell migration and invasion as well as resistance to cell death or survival. In this chapter we briefly review findings related to remodeling of Ca2+ entry pathways in cancer with emphasis on the mechanisms that contribute to increased store-operated Ca2+ entry (SOCE) and store-operated currents (SOCs) in colorectal cancer cells. Finally, since SOCE appears critically involved in colon tumorogenesis, the inhibition of SOCE by aspirin and other NSAIDs and its possible contribution to colon cancer chemoprevention is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  PubMed  PubMed Central  Google Scholar 

  3. Montero M, Alonso MT, Carnicero E, Cuchillo-Ibáñez I, Albillos A, García AG, García-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2(2):57–61

    Article  CAS  PubMed  Google Scholar 

  4. Villalobos C, Núñez L, Montero M, García AG, Alonso MT, Chamero P, Alvarez J, García-Sancho J (2002) Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells. FASEB J 16(3):343–353

    Article  CAS  PubMed  Google Scholar 

  5. Quintana A, Pasche M, Junker C, Al-Ansary D, Rieger H, Kummerow C, Nuñez L, Villalobos C, Meraner P, Becherer U, Rettig J, Niemeyer BA, Hoth M (2011) Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J 30:3895–3912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alvarez J, Montero M (2002) Measuring [Ca2+] in the endoplasmic reticulum with aequorin. Cell Calcium 32(5–6):251–260

    Article  CAS  PubMed  Google Scholar 

  7. Hewavitharana T, Deng X, Soboloff J, Gill DL (2007) Role of STIM and Orai proteins in the store-operated calcium signaling pathway. Cell Calcium 42:173–182

    Article  CAS  PubMed  Google Scholar 

  8. Putney JW (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231:10–22

    Article  CAS  PubMed  Google Scholar 

  9. Muik M, Schindl R, Fahrner M, Romanin C (2012) Ca2+ release-activated Ca2+ (CRAC) current, structure, and function. Cell Mol Life Sci 69:4163–4176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoth M, Niemeyer BA (2013) The neglected CRAC proteins: Orai2, Orai3, and STIM2. Curr Top Membr 1:237–271

    Article  Google Scholar 

  12. Ma X, Nilius B, Wong JW, Huang Y, Yao X (2011) Electrophysiological properties of heteromeric TRPV4-C1 channels. Biochim Biophys Acta 1808:2789–2797

    Article  CAS  PubMed  Google Scholar 

  13. Cheng KT, Ong HL, Liu X, Ambudkar IS (2013) Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr 71:149–179

    Article  CAS  PubMed  Google Scholar 

  14. Monteith GR, Davis FM, Roberts-Thomson SJ (2012) Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 287:31666–31673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prevarskaya N, Ouadid-Ahidouch H, Skryma R, Shuba Y (2014) Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Philos Trans R Soc Lond B Biol Sci 369:20130097

    Article  PubMed  PubMed Central  Google Scholar 

  16. Prevarskaya N, Skryma R, Shuba Y (2011) Calcium in tumor metastasis: new roles for known actors. Nat Rev Cancer 11:609–618

    Article  CAS  PubMed  Google Scholar 

  17. Bergmeier W, Weidinger C, Zee I, Feske S (2013) Emerging roles of store-operated Ca2+ entry through STIM and ORAI proteins in immunity, hemostasis and cancer. Channels 7:379–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stewart TA, Yapa KT, Monteith GR (2015) Altered calcium signaling in cancer cells. Biochim Biophys Acta 1848 (10PtB):2502–11

    Google Scholar 

  19. Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cell proliferation and survival. Nat Cancer Rev 8:361–375

    Article  CAS  Google Scholar 

  20. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW (1997) Gene expression profiles in normal and cancer cells. Science 276:1268–1272

    Article  CAS  PubMed  Google Scholar 

  21. Wang JY, Sun J, Huang MY, Wang YS, Hou MF, Sun Y, He H, Krishna N, Chiu SJ, Lin S, Yang S, Chang WC. STIM1 overexpression promotes colorectal cancer progression, cell motility and COX-2 expression. Oncogene Nov 10. Wang XT, Nagaba Y, Cross HS, Wrba F, Zhang L, Guggino SE (2000) The mRNA of L-type calcium channel elevated in colon cancer: protein distribution in normal and cancerous colon. Am J Pathol 157:1549–1562

    Google Scholar 

  22. Toyota M, Ho C, Ohe-Toyota M, Baylin SB, Issa JP (1999) Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5′ CpG island in human tumors. Cancer Res 59:4535–4541

    CAS  PubMed  Google Scholar 

  23. Gackiere F, Bidaux G, Delcourt P, Van Coppenolle F, Katsogiannou M, Dewailly E, Bavencoffe A, Van Chuoi-Mariot MT, Mauroy B, Prevarskaya N, Mariot P (2008) Cav3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J Biol Chem 283:10162–10173

    Article  CAS  PubMed  Google Scholar 

  24. Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, Scruggs JA, Sikka SS, Li M (2008) Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol 14:4984–4991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Villalobos C, Fonteriz R, López MG, García AG, García-Sancho J (1992) Inhibition of voltage-gated Ca2+ entry into GH3 and chromaffin cells by imidazole antimycotics and other cytochrome P450 blockers. FASEB J 6(9):2742–2747

    CAS  PubMed  Google Scholar 

  26. Dhennin-Duthille I, Gautier M, Faouzi M, Guilbert A, Brevet M, Vaudry D, Ahidouch A, Sevestre H, Ouadid-Ahidouch H (2011) High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters. Cell Physiol Biochem 28:813–822

    Article  CAS  PubMed  Google Scholar 

  27. Yang S, Zhang JJ, Huang XY (2009) Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 5:124–134

    Article  Google Scholar 

  28. Aydar E, Yeo S, Djamgoz M, Palmer C (2009) Abnormal expression, localization and interaction of canonical transient receptor potential ion channels in human breast cancer cell lines and tissues: a potential target for breast cancer diagnosis and therapy. Cancer Cell Int 9:23

    Article  PubMed  PubMed Central  Google Scholar 

  29. Veliceasa D, Ivanovic M, Hoepfner FT, Thumbikat P, Volpert OV, Smith ND (2007) Transient potential receptor channel 4 controls thrombospondin-1 secretion and angiogenesis in renal cell carcinoma. FEBS J 274:6365–6377

    Article  CAS  PubMed  Google Scholar 

  30. Shi Y, Ding X, He ZH, Zhou KC, Wang Q, Wang YZ (2009) Critical role of TRPC6 channels in G2 phase transition and the development of human oesophageal cancer. Gut 58:1443–1450

    Article  CAS  PubMed  Google Scholar 

  31. Zhang SS, Wen J, Yang F, Cai XL, Yang H, Luo KJ, Liu QW, Hu RG, Xie X, Huang QY, Chen JY, Fu JH, Hu Y (2013) High expression of transient potential receptor C6 correlated with poor prognosis in patients with esophageal squamous cell carcinoma. Med Oncol 30:607

    Article  PubMed  Google Scholar 

  32. Cai R, Ding X, Zhou K, Shi Y, Ge R, Ren G, Jin Y, Wang Y (2009) Blockade of TRPC6 channels induced G2/M phase arrest and suppressed growth in human gastric cancer cells. Int J Cancer 125:2281–2287

    Article  CAS  PubMed  Google Scholar 

  33. Ding X, He Z, Zhou K, Cheng J, Yao H, Lu D, Cai R, Jin Y, Dong B, Xu Y, Wang Y (2010) Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst 102:1052–1068

    Article  CAS  PubMed  Google Scholar 

  34. El Boustany C, Bidaux G, Enfissi A, Delcourt P, Prevarskaya N, Capiod T (2008) Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology 47:2068–2077

    Article  PubMed  Google Scholar 

  35. Guilbert A, Dhennin-Duthille I, Hiani YE, Haren N, Khorsi H, Sevestre H, Ahidouch A, Ouadid-Ahidouch H (2008) Expression of TRPC6 channels in human epithelial breast cancer cells. BMC Cancer 8:125

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang JY, Sun J, Huang MY, Wang YS, Hou MF, Sun Y, He H, Krishna N, Chiu SJ, Lin S, Yang S, Chang WC (2015) STIM1 overexpression promotes colorectal cancer progression, cell motility and COX-2 expression. Oncogene 34(33):4358–4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM, Hediger MA, Freeman MR (2002) Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab Invest 82:1755–1764

    Article  CAS  PubMed  Google Scholar 

  38. Capiod T, Shuba Y, Skryma R, Prevarskaya N (2007) Calcium signaling and cancer cell growth. Subcell Biochem 45:405–427

    Article  CAS  PubMed  Google Scholar 

  39. Raphaël M, Lehen’kyi V, Vandenberghe M, Beck B, Khalimonchyk S, Vanden Abeele F, Farsetti L, Germain E, Bokhobza A, Mihalache A, Gosset P, Romanin C, Clézardin P, Skryma R, Prevarskaya N (2014) TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival. Proc Natl Acad Sci U S A 111(37):E3870–E3879

    Article  PubMed  PubMed Central  Google Scholar 

  40. Déliot N, Constantin B (2015) Plasma membrane calcium channels in cancer: alterations and consequences for cell proliferation and migration. Biochim Biophys Acta 1848:2512–2522

    Article  PubMed  Google Scholar 

  41. Fusi C, Materazzi S, Minocci D, Maio V, Oranges T, Massi D, Nassini R (2014) Transient receptor potential vanilloid 4 (TRPV4) is downregulated in keratinocytes in human non-melanoma skin cancer. J Invest Dermatol 134:2408–2417

    Article  CAS  PubMed  Google Scholar 

  42. Mizuno H, Suzuki Y, Watanabe M, Sokabe T, Yamamoto T, Hattori R, Gotoh M, Tominaga M (2014) Potential role of transient receptor potential (TRP) channels in bladder cancer cells. J Physiol Sci 64(4):305–314

    Article  CAS  PubMed  Google Scholar 

  43. Bolanz KA, Hediger MA, Landowski CP (2008) The role of TRPV6 in breast carcinogenesis. Mol Cancer Ther 7:271–279

    Article  CAS  PubMed  Google Scholar 

  44. Peng JB, Zhuang L, Berger UV, Adam RM, Williams BJ, Brown EM, Hediger MA, Freeman MR (2001) CaT1 expression correlates with tumor grade in prostate cancer. Biochem Biophys Res Commun 282:729–734

    Article  CAS  PubMed  Google Scholar 

  45. Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C, Cavalie A, Reus K, Meese E, Bonkhoff H, Flockerzi V (2001) Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J Biol Chem 276(22):19461–19468

    Article  CAS  PubMed  Google Scholar 

  46. Fan H, Shen YX, Yuan YF (2014) Expression and prognostic roles of TRPV5 and TRPV6 in non-small cell lung cancer after curative resection. Asian Pac J Cancer Prev 15:2559–2563

    Article  PubMed  Google Scholar 

  47. Yee NS, Zhou W, Lee M (2010) Transient receptor potential channel TRPM8 is over-expressed and required for cellular proliferation in pancreatic adenocarcinoma. Cancer Lett 297:49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsavaler L, Shapero MH, Morkowski S, Laus R (2001) Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61:3760–3769

    CAS  PubMed  Google Scholar 

  49. Fuessel S, Sickert D, Meye A, Klenk U, Schmidt U, Schmitz M, Rost AK, Weigle B, Kiessling A, Wirth MP (2003) Multiple tumor marker analyses (PSA, hK2, PSCA, trp-p8) in primary prostate cancers using quantitative RT-PCR. Int J Oncol 23:221–228

    CAS  PubMed  Google Scholar 

  50. Schmidt U, Fuessel S, Koch R, Baretton GB, Lohse A, Tomasetti S, Unversucht S, Froehner M, Wirth MP, Meye A (2006) Quantitative multi-gene expression profiling of primary prostate cancer. Prostate 66(14):1521–1534

    Article  CAS  PubMed  Google Scholar 

  51. Prevarskaya N, Flourakis M, Bidaux G, Thebault S, Skryma R (2007) Differential role of TRP channels in prostate cancer. Biochem Soc Trans 35(Pt 1):133–135

    Article  CAS  PubMed  Google Scholar 

  52. Chodon D, Guilbert A, Dhennin-Duthille I, Gautier M, Telliez MS, Sevestre H, Ouadid-Ahidouch H (2010) Estrogen regulation of TRPM8 expression in breast cancer cells. BMC Cancer 10:212

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu J, Chen Y, Shuai S, Ding D, Li R, Luo R (2014) TRPM8 promotes aggressiveness of breast cancer cells by regulating EMT via activating AKT/GSK-3β pathway. Tumour Biol 35(9):8969–8977

    Article  CAS  PubMed  Google Scholar 

  54. Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, Chou CY, Chang HC, Tang MJ, Shen MR (2011) Calcium store sensor stromal-interaction molecule1-dependent signaling plays an important role in cervical cancer growth, migration and angiogenesis. Proc Natl Acad Sci U S A 108:15225–15230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li G, Zhang Z, Wang R, Ma W, Yang Y, Wei J, Wei Y (2013) Suppression of STIM1 inhibits human glioblastoma cell proliferation and induces G0/G1 phase arrest. J Exp Clin Cancer Res 32:20

    Article  PubMed  PubMed Central  Google Scholar 

  56. Motiani RK, Hyzinski-García MC, Zhang X, Henkel MM, Abdullaev IF, Kuo YH, Matrougui K, Mongin AA, Trebak M (2013) STIM1 and Orai1 mediate CRAC channel activity and are essential for human glioblastoma invasion. Pflugers Arch 465(9):1249–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McAndrew D, Grice DM, Peters AA, Davis FM, Stewart T, Rice M, Smart CE, Brown MA, Kenny PA, Roberts-Thomson SJ, Monteith GR (2011) ORAI1-mediated calcium influx in lactation and in breast cancer. Mol Cancer Ther 10:448–460

    Article  CAS  PubMed  Google Scholar 

  58. Motiani RK, Zhang X, Harmon KE, Keller RS, Matrougui K, Bennett JA, Trebak M (2013) Orai3 is an estrogen receptor α-regulated Ca2+ channel that promotes tumorigenesis. FASEB J 27(1):63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ay AS, Benzerdjeb N, Sevestre H, Ahidouch A, Ouadid-Ahidouch H (2013) Orai3 constitutes a native store-operated calcium entry that regulates non small cell lung adenocarcinoma cell proliferation. PLoS One 8(9):e72889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu M, Chen L, Zhao P, Zhou H, Zhang C, Yu S, Lin Y, Yang X (2014) Store-operated Ca2+ entry regulates glioma cell migration and invasion via modulation of Pyk2 phosphorylation. J Exp Clin Cancer Res 33:98

    PubMed  PubMed Central  Google Scholar 

  61. Umemura M, Baljinnyam E, Feske S, De Lorenzo MS, Xie LH, Feng X, Oda K, Makino A, Fujita T, Yokoyama U, Iwatsubo M, Chen S, Goydos JS, Ishikawa Y, Iwatsubo K (2014) Store-operated Ca2+ entry (SOCE) regulates melanoma proliferation and cell migration. PLoS One 9:e89292

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kim JH, Lkhagvadorj S, Lee MR, Hwang KH, Chung HC, Jung JH, Cha SK, Eom M (2014) Orai1 and STIM1 are critical for cell migration and proliferation of clear cell renal cell carcinoma. Biochem Biophys Res Commun 448:76–82

    Article  CAS  PubMed  Google Scholar 

  63. Faouzi M, Hague F, Potier M, Ahidouch A, Sevestre H, Ouadid-Ahidouch H (2011) Down-regulation of Orai3 arrests cell-cycle progression and induces apoptosis in breast cancer cells but not in normal breast epithelial cells. J Cell Physiol 226:542–551

    Article  CAS  PubMed  Google Scholar 

  64. Holzmann C, Kilch T, Kappel S, Armbruster A, Jung V, Stockle M, Bogeski I, Schwarz EC, Peinelt C (2013) ICRAC controls the rapid androgen response in human primary prostate epithelial cells and is altered in prostate cancer. Oncotarget 4:2096–2107

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dubois C, Vanden Abeele F, Lehen’kyi V, Gkika D, Guarmit B, Lepage G, Slomianny C, Borowiec AS, Bidaux G, Benahmed M, Shuba Y, Prevarskaya N (2014) Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell 26:19–32

    Article  CAS  PubMed  Google Scholar 

  66. Scrideli CA, Carlotti CG Jr, Okamoto OK, Andrade VS, Cortez MA, Motta FJ, Lucio-Eterovic AK, Neder L, Rosemberg S, Oba-Shinjo SM, Marie SK, Tone LG (2008) Gene expression profile analysis of primary glioblastomas and non-neoplastic brain tissue: identification of potential target genes by oligonucleotide microarray and real-time quantitative PCR. J Neurooncol 88:281–291

    Article  CAS  PubMed  Google Scholar 

  67. Ruano Y, Mollejo M, Ribalta T, Fiano C, Camacho FI, Gomez E, de Lope AR, Hernandez-Moneo JL, Martinez P, Melendez B (2006) Identification of novel candidate target genes in amplicons of glioblastoma multiforme tumors detected by expression and CGH microarray profiling. Mol Cancer 5:39

    Article  PubMed  PubMed Central  Google Scholar 

  68. Aytes A, Mollevi DG, Martinez-Iniesta M, Nadal M, Vidal A, Morales A, Salazar R, Capella G, Villanueva A (2012) Stromal interaction molecule 2 (STIM2) is frequently overexpressed in colorectal tumors and confers a tumor cell growth suppressor phenotype. Mol Carcinog 51:746–753

    Article  CAS  PubMed  Google Scholar 

  69. Sobradillo D, Hernández-Morales M, Ubierna D, Moyer MP, Núñez L, Villalobos C (2014) A reciprocal shift in transient receptor potential channel 1 (TRPC1) and stromal interaction molecule 2 (STIM2) contributes to Ca2+ remodeling and cancer hallmarks in colorectal carcinoma cells. J Biol Chem 289:28765–28782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Núñez L, Valero RA, Senovilla L, Sanz-Blasco S, García-Sancho J, Villalobos C (2006) Cell proliferation depends on mitochondrial Ca2+ uptake: inhibition by salicylate. J Physiol (Lond) 571:57–73

    Article  Google Scholar 

  71. Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomized trials. Lancet 377:31–41

    Article  CAS  PubMed  Google Scholar 

  72. Arber N, Levin B (2008) Chemoprevention of colorectal neoplasia: the potential for personalized medicine. Gastroenterology 134(4):1224–1237

    Article  CAS  PubMed  Google Scholar 

  73. Burn J, Mathers JC, Bishop DT (2013) Chemoprevention in Lynch syndrome. Fam Cancer 12(4):707–718

    Article  CAS  PubMed  Google Scholar 

  74. Weiss H, Amberger A, Widschwendter M, Margreiter R, Ofner D, Dietl P (2001) Inhibition of store-operated calcium entry contributes to the anti-proliferative effect of non-steroidal anti-inflammatory drugs in human colon cancer cells. Int J Cancer 92(6):877–882

    Article  CAS  PubMed  Google Scholar 

  75. Valero RA, Senovilla L, Núñez L, Villalobos C (2008) The role of mitochondrial potential in control of calcium signals involved in cell proliferation. Cell Calcium 44:259–269

    Article  CAS  PubMed  Google Scholar 

  76. Muñoz E, Valero RA, Quintana A, Hoth M, Núñez L, Villalobos C (2011) Nonsteroidal anti-inflammatory drugs inhibit vascular smooth muscle cell proliferation by enabling the Ca2+-dependent inactivation of calcium release-activated calcium/Orai channels normally prevented by mitochondria. J Biol Chem 286:16186–16196

    Article  PubMed  PubMed Central  Google Scholar 

  77. Muñoz E, Hernández-Morales M, Sobradillo D, Rocher A, Núñez L, Villalobos C (2013) Intracellular Ca2+ remodeling during the phenotypic journey of human coronary smooth muscle cells. Cell Calcium 54:375–385

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been funded by grants from Ministerio de Economía y competitividad, Spain (BFU2012-37146) and Junta de Castilla y León, Spain [BIO/VA46/14]. DS was supported by a predoctoral fellowship from the JAE program, National Research Council (CSIC), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Villalobos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Villalobos, C., Sobradillo, D., Hernández-Morales, M., Núñez, L. (2016). Remodeling of Calcium Entry Pathways in Cancer. In: Rosado, J. (eds) Calcium Entry Pathways in Non-excitable Cells. Advances in Experimental Medicine and Biology, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-319-26974-0_19

Download citation

Publish with us

Policies and ethics