Skip to main content

Modulation of Calcium Entry by Mitochondria

  • Chapter
  • First Online:
Book cover Calcium Entry Pathways in Non-excitable Cells

Abstract

The role of mitochondria in intracellular Ca2+ signaling relies mainly in its capacity to take up Ca2+ from the cytosol and thus modulate the cytosolic [Ca2+]. Because of the low Ca2+-affinity of the mitochondrial Ca2+-uptake system, this organelle appears specially adapted to take up Ca2+ from local high-Ca2+ microdomains and not from the bulk cytosol. Mitochondria would then act as local Ca2+ buffers in cellular regions where high-Ca2+ microdomains form, that is, mainly close to the cytosolic mouth of Ca2+ channels, both in the plasma membrane and in the endoplasmic reticulum (ER). One of the first targets proposed already in the 1990s to be regulated in this way by mitochondria were the store-operated Ca2+ channels (SOCE). Mitochondria, by taking up Ca2+ from the region around the cytosolic mouth of the SOCE channels, would prevent its slow Ca2+-dependent inactivation, thus keeping them active for longer. Since then, evidence for this mechanism has accumulated mainly in immunitary cells, where mitochondria actually move towards the immune synapse during T cell activation. However, in many other cell types the available data indicate that the close apposition between plasma and ER membranes occurring during SOCE activation precludes mitochondria from getting close to the Ca2+-entry sites. Alternative pathways for mitochondrial modulation of SOCE, both Ca2+-dependent and Ca2+-independent, have also been proposed, but further work will be required to elucidate the actual mechanisms at work. Hopefully, the recent knowledge of the molecular nature of the mitochondrial Ca2+ uniporter will allow soon more precise studies on this matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ca2+]M :

Mitochondrial matrix free [Ca2+]

CICR:

Ca2+-induced Ca2+ release

CRAC channels:

Ca2+-release activated Ca2+ channels

ER:

Endoplasmic reticulum

GDAP1:

Ganglioside-induced differentiation-associated protein 1

InsP3 :

Inositol 1,4,5-trisphosphate

IS:

Immunological synapse or Immune synapse

JPH1:

Junctophilin 1

MCU:

Mitochondrial calcium uniporter

NFAT:

Nuclear factor of activated T-cells

SERCA:

Sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase

SOCE:

Store-operated Ca2+ entry

STIM:

Stromal interaction molecule

TRP:

Transient receptor potential

References

  1. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  2. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store by InsP3. Nature 306:67–69

    Article  CAS  PubMed  Google Scholar 

  3. de la Fuente S, Fonteriz RI, Montero M, Alvarez J (2013) Ca2+ homeostasis in the endoplasmic reticulum measured with a new low-Ca2+-affinity targeted aequorin. Cell Calcium 54:37–45

    Article  PubMed  Google Scholar 

  4. Rossi CS, Lehninger AL (1963) Stoichiometric relationships between accumulation of ions by mitochondria and the energy-coupling sites in the respiratory chain. Biochem Z 338:698–713

    CAS  PubMed  Google Scholar 

  5. Scarpa A, Graziotti P (1973) Ca2+ uptake by cardiac mitochondria. J Gen Physiol 62:756–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bragadin M, Pozzan T, Azzone GF (1979) Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry 18:5972–5978

    Article  CAS  PubMed  Google Scholar 

  7. Rizzuto R, Simpson AW, Brini M, Pozzan T (1992) Rapid changes of [Ca2+]M revealed by targeted recombinant aequorin. Nature 358:325–327

    Article  CAS  PubMed  Google Scholar 

  8. McCormack JG, Halestrap AP, Denton RM (1990) Role of Ca2+ in regulation of intramitochondrial metabolism. Physiol Rev 70:391–425

    CAS  PubMed  Google Scholar 

  9. Robb-Gaspers LD, Burnett P, Rutter GA, Denton RM, Rizzuto R, Thomas AP (1998) Integrating [Ca2+]c signals into mitochondrial metabolic responses. EMBO J 17:4987–4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96:13807–13812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Satrústegui J, Pardo B, Del Arco A (2007) Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 87:29–67

    Article  PubMed  Google Scholar 

  12. Amigo I, Traba J, González-Barroso MM, Rueda CB, Fernández M, Rial E, Sánchez A, Satrústegui J, Del Arco A (2013) Glucagon regulation of oxidative phosphorylation requires an increase in matrix adenine nucleotide content through Ca2+ activation of the mitochondrial ATP-Mg/Pi carrier SCaMC-3. J Biol Chem 288:7791–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Llorente-Folch I, Rueda CB, Amigo I, del Arco A, Saheki T, Pardo B, Satrústegui J (2013) Calcium-regulation of mitochondrial respiration maintains ATP homeostasis and requires ARALAR/AGC1-malate aspartate shuttle in intact cortical neurons. J Neurosci 33:13957–13971

    Article  CAS  PubMed  Google Scholar 

  14. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787:1309–1316

    Article  CAS  PubMed  Google Scholar 

  15. Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez JP, Lee HY, Cline GW, Samuel VT, Kibbey RG, Shulman GI (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Santo-Domingo J, Demaurex N (2010) Biochim Biophys Acta 1797:907–912

    Article  CAS  PubMed  Google Scholar 

  17. Montero M, Alonso MT, Carnicero E, Cuchillo-Ibáñez I, Albillos A, García AG, García-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial [Ca2+] transients that modulate secretion. Nat Cell Biol 2:57–61

    Article  CAS  PubMed  Google Scholar 

  18. Villalobos C, Nuñez L, Montero M, García AG, Alonso MT, Chamero P, Alvarez J, García-Sancho J (2002) Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells. FASEB J 16:343–353

    Article  CAS  PubMed  Google Scholar 

  19. Park YB, Herrington J, Babcock DF, Hille B (1996) Ca2+ clearance mechanisms in isolated rat adrenal chromaffin cells. J Physiol 492:329–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. White RJ, Reynolds IJ (1997) Mitochondria accumulate Ca2+ following intense glutamate stimulation of cultured rat forebrain neurones. J Physiol 498:31–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoth M, Fanger CM, Lewis RS (1997) Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 137:633–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hernandez-Guijo JM, Maneu-Flores VE, Ruiz-Nuno A, Villarroya M, Garcia AG, Gandia L (2001) Calcium-dependent inhibition of L, N, and P/Q Ca2+ channels in chromaffin cells: role of mitochondria. J Neurosci 21:2553–2560

    CAS  PubMed  Google Scholar 

  23. Tekmen M, Gleason E (2010) Multiple Ca2+-dependent mechanisms regulate L-type Ca2+ current in retinal amacrine cells. J Neurophysiol 104:1849–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Montero M, Barrero MJ, Alvarez J (1997) [Ca2+] microdomains control agonist-induced Ca2+ release. FASEB J 11:881–885

    CAS  PubMed  Google Scholar 

  25. Vay L, Hernández-Sanmiguel E, Santo-Domingo J, Lobatón CD, Moreno A, Montero M, Alvarez J (2007) Modulation of Ca2+-release and Ca2+ oscillations by Ca2+ uniporter stimulation. J Physiol 580:39–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Olson ML, Chalmers S, McCarron JG (2012) Mitochondrial organization and Ca2+ uptake. Biochem Soc Trans 40:158–167

    Article  CAS  PubMed  Google Scholar 

  27. Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A 107:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pendin D, Greotti E, Pozzan T (2014) The elusive importance of being a mitochondrial Ca2+ uniporter. Cell Calcium 55:139–145

    Article  CAS  PubMed  Google Scholar 

  31. Marchi S, Pinton P (2014) The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J Physiol 592:829–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA, Aponte AM, Gucek M, Balaban RS, Murphy E, Finkel T (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15:1464–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murphy E, Pan X, Nguyen T, Liu J, Holmström KM, Finkel T (2014) Unresolved questions from the analysis of mice lacking MCU expression. Biochem Biophys Res Commun 449:384–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Putney JW (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  CAS  PubMed  Google Scholar 

  35. Takemura H, Putney JW (1989) Capacitative calcium entry in parotid acinar cells. Biochem J 258:409–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Montero M, Garcia-Sancho J, Alvarez J (1993) Transient inhibition by chemotactic peptide of a store-operated Ca2+ entry pathway in human neutrophils. J Biol Chem 268:13055–13061

    CAS  PubMed  Google Scholar 

  37. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  CAS  PubMed  Google Scholar 

  38. Putney JW (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231:10–22

    Article  CAS  PubMed  Google Scholar 

  39. Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14:2337–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lewis RS (2011) Store-operated calcium channels: new perspectives on mechanism and function. Cold Spring Harb Perspect Biol 3:a003970

    Article  PubMed  PubMed Central  Google Scholar 

  41. Srikanth S, Gwack Y (2013) Orai1-NFAT signalling pathway triggered by T cell receptor stimulation. Mol Cells 35:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheng KT, Ong HL, Liu X, Ambudkar IS (2013) Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr 71:149–179

    Article  CAS  PubMed  Google Scholar 

  43. Shaw PJ, Qu B, Hoth M, Feske S (2013) Molecular regulation of CRAC channels and their role in lymphocyte function. Cell Mol Life Sci 70:2637–2656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  CAS  PubMed  Google Scholar 

  45. Dionisio N, Redondo PC, Jardin I, Rosado JA (2012) Transient receptor potential channels in human platelets: expression and functional role. Curr Mol Med 12:1319–1328

    Article  CAS  PubMed  Google Scholar 

  46. Berna-Erro A, Redondo PC, Rosado JA (2012) Store-operated Ca2+ entry. In: Islam MS (ed) Calcium signaling series: advances in experimental medicine and biology, vol 740. Springer, Heidelberg, pp 349–382

    Chapter  Google Scholar 

  47. Albarrán L, Dionisio N, Lopez E, Salido GM, Redondo PC, Rosado JA (2014) STIM1 regulates TRPC6 heteromultimerization and subcellular location. Biochem J 463:373–381

    Article  PubMed  Google Scholar 

  48. Watson R, Parekh AB (2012) Mitochondrial regulation of CRAC channel-driven cellular responses. Cell Calcium 52:52–56

    Article  CAS  PubMed  Google Scholar 

  49. Singh BB, Liu X, Tang J, Zhu MX, Ambudkar IS (2002) Calmodulin regulates Ca2+-dependent feedback inhibition of store-operated Ca2+ influx by interaction with a site in the C terminus of TrpC1. Mol Cell 9:739–750

    Article  CAS  PubMed  Google Scholar 

  50. Hoth M, Button DC, Lewis RS (2000) Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc Natl Acad Sci U S A 97:10607–10612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gilabert JA, Parekh AB (2000) Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca2+ current ICRAC. EMBO J 19:6401–6407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parekh AB (2003) Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. J Physiol 547:333–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003) Sustained Ca2+ transfer across mitochondria is Essential for mitochondrial Ca2+ buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278:44769–44779

    Article  CAS  PubMed  Google Scholar 

  54. Thakur P, Dadsetan S, Fomina AF (2012) Bidirectional coupling between ryanodine receptors and Ca2+ release-activated Ca2+ (CRAC) channel machinery sustains store-operated Ca2+ entry in human T lymphocytes. J Biol Chem 287:37233–37244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Willoughby D (2012) Organization of cAMP signalling microdomains for optimal regulation by Ca2+ entry. Biochem Soc Trans 40:246–250

    Article  CAS  PubMed  Google Scholar 

  56. Kar P, Nelson C, Parekh AB (2011) Selective activation of the transcription factor NFAT1 by calcium microdomains near Ca2+ release-activated Ca2+ (CRAC) channels. J Biol Chem 286:14795–14803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kar P, Nelson C, Parekh AB (2012) CRAC channels drive digital activation and provide analog control and synergy to Ca2+-dependent gene regulation. Curr Biol 22:242–247

    Article  CAS  PubMed  Google Scholar 

  58. Kar P, Samanta K, Kramer H, Morris O, Bakowski D, Parekh AB (2014) Dynamic assembly of a membrane signaling complex enables selective activation of NFAT by Orai1. Curr Biol 24:1361–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Duszyński J, Kozieł R, Brutkowski W, Szczepanowska J, Zabłocki K (2006) The regulatory role of mitochondria in capacitative calcium entry. Biochim Biophys Acta 1757:380–387

    Article  PubMed  Google Scholar 

  60. Joseph N, Reicher B, Barda-Saad M (2014) The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux. Biochim Biophys Acta 1838:557–568

    Article  CAS  PubMed  Google Scholar 

  61. Huang HM, Chen HL, Gibson GE (2014) Interactions of endoplasmic reticulum and mitochondria Ca2+ stores with capacitative calcium entry. Metab Brain Dis 29:1083–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Singaravelu K, Nelson C, Bakowski D, de Brito OM, Ng SW, Di Capite J, Powell T, Scorrano L, Parekh AB (2011) Mitofusin 2 regulates STIM1 migration from the Ca2+ store to the plasma membrane in cells with depolarized mitochondria. J Biol Chem 286:12189–12201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Spät A, Szanda G, Csordás G, Hajnóczky G (2008) High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling. Cell Calcium 44:51–63

    Article  PubMed  PubMed Central  Google Scholar 

  64. de la Fuente S, Matesanz-Isabel J, Fonteriz RI, Montero M, Alvarez J (2014) Dynamics of mitochondrial Ca2+ uptake in MICU1-knockdown cells. Biochem J 458:33–40

    Article  PubMed  Google Scholar 

  65. Quintana A, Schwarz EC, Schwindling C, Lipp P, Kaestner L, Hoth M (2006) Sustained activity of calcium release-activated calcium channels requires translocation of mitochondria to the plasma membrane. J Biol Chem 281:40302–40309

    Article  CAS  PubMed  Google Scholar 

  66. Martín-Cófreces NB, Baixauli F, Sánchez-Madrid F (2014) Immune synapse: conductor of orchestrated organelle movement. Trends Cell Biol 24:61–72

    Article  PubMed  Google Scholar 

  67. Quintana A, Schwindling C, Wenning AS, Becherer U, Rettig J, Schwarz EC, Hoth M (2007) T cell activation requires mitochondrial translocation to the immunological synapse. Proc Natl Acad Sci U S A 104:14418–14423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Contento RL, Campello S, Trovato AE, Magrini E, Anselmi F, Viola A (2010) Adhesion shapes T cells for prompt and sustained T-cell receptor signalling. EMBO J 29:4035–4047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Quintana A, Pasche M, Junker C, Al-Ansary D, Rieger H, Kummerow C, Nuñez L, Villalobos C, Meraner P, Becherer U, Rettig J, Niemeyer BA, Hoth M (2011) Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J 30:3895–3912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schwindling C, Quintana A, Krause E, Hoth M (2010) Mitochondria positioning controls local calcium influx in T cells. J Immunol 184:184–190

    Article  CAS  PubMed  Google Scholar 

  71. Quintana A, Hoth M (2012) Mitochondrial dynamics and their impact on T cell function. Cell Calcium 52:57–63

    Article  CAS  PubMed  Google Scholar 

  72. Baixauli F, Martín-Cófreces NB, Morlino G, Carrasco YR, Calabia-Linares C, Veiga E, Serrador JM, Sánchez-Madrid F (2011) The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse. EMBO J 30:1238–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pla-Martín D, Rueda CB, Estela A, Sánchez-Piris M, González-Sánchez P, Traba J, de la Fuente S, Scorrano L, Renau-Piqueras J, Alvarez J, Satrústegui J, Palau F (2013) Silencing of the Charcot-Marie-Tooth disease-associated gene GDAP1 induces abnormal mitochondrial distribution and affects Ca2+ homeostasis by reducing store-operated Ca2+ entry. Neurobiol Dis 55:140–151

    Article  PubMed  Google Scholar 

  74. Pla-Martín D, Calpena E, Lupo V, Márquez C, Rivas E, Sivera R, Sevilla T, Palau F, Espinós C (2015) Junctophilin-1 is a modifier gene of GDAP1-related Charcot-Marie-Tooth disease. Hum Mol Genet 24:213–229

    Article  PubMed  Google Scholar 

  75. Frieden M, James D, Castelbou C, Danckaert A, Martinou JC, Demaurex N (2004) Ca2+ homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. J Biol Chem 279:22704–22714

    Article  CAS  PubMed  Google Scholar 

  76. Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38:280–290

    Article  CAS  PubMed  Google Scholar 

  77. Contreras L, Drago I, Zampese E, Pozzan T (2010) Mitochondria: the calcium connection. Biochim Biophys Acta 1797:607–618

    Article  CAS  PubMed  Google Scholar 

  78. Korzeniowski MK, Szanda G, Balla T, Spät A (2009) Store-operated Ca2+ influx and subplasmalemmal mitochondria. Cell Calcium 46:49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Csordás G, Várnai P, Golenár T, Roy S, Purkins G, Schneider TG, Balla T, Hajnóczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shin DM, Muallem S (2010) What the mitochondria see. Mol Cell 39:6–7

    Article  CAS  PubMed  Google Scholar 

  81. Demaurex N, Poburko D, Frieden M (2009) Regulation of plasma membrane calcium fluxes by mitochondria. Biochim Biophys Acta 1787:1383–1394

    Article  CAS  PubMed  Google Scholar 

  82. Alonso MT, Manjarrés IM, García-Sancho J (2012) Privileged coupling between Ca2+ entry through plasma membrane store-operated Ca2+ channels and the endoplasmic reticulum Ca2+ pump. Mol Cell Endocrinol 353:37–44

    Article  CAS  PubMed  Google Scholar 

  83. García-Sancho J (2014) The coupling of plasma membrane calcium entry to calcium uptake by endoplasmic reticulum and mitochondria. J Physiol 592:261–268

    Article  PubMed  PubMed Central  Google Scholar 

  84. Muñoz E, Valero RA, Quintana A, Hoth M, Núñez L, Villalobos C (2011) Nonsteroidal anti-inflammatory drugs inhibit vascular smooth muscle cell proliferation by enabling the Ca2+-dependent inactivation of calcium release-activated calcium/Orai channels normally prevented by mitochondria. J Biol Chem 286:16186–16196

    Article  PubMed  PubMed Central  Google Scholar 

  85. Samanta K, Douglas S, Parekh AB (2014) Mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation. PLoS One 9:e101188

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tang S, Wang X, Shen Q, Yang X, Yu C, Cai C, Cai G, Meng X, Zou F (2015) Mitochondrial Ca2+ uniporter is critical for store-operated Ca2+ entry-dependent breast cancer cell migration. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2015.01.092

    PubMed Central  Google Scholar 

  87. Deak AT, Blass S, Khan MJ, Groschner LN, Waldeck-Weiermair M, Hallström S, Graier WF, Malli R (2014) IP3-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake. J Cell Sci 127:2944–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. de la Fuente S, Fonteriz RI, de la Cruz PJ, Montero M, Alvarez J (2012) Mitochondrial free [Ca2+] dynamics measured with a novel low-Ca2+ affinity aequorin probe. Biochem J 445:371–376

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Spanish Ministerio de Ciencia e Innovación (BFU2011-25763). Jessica Matesanz-Isabel holds a FPI (Formación de Personal Investigador) fellowship from the Spanish Government. Jessica Arias-del-Val holds a fellowship from Junta de Castilla y León.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fonteriz, R., Matesanz-Isabel, J., Arias-del-Val, J., Alvarez-Illera, P., Montero, M., Alvarez, J. (2016). Modulation of Calcium Entry by Mitochondria. In: Rosado, J. (eds) Calcium Entry Pathways in Non-excitable Cells. Advances in Experimental Medicine and Biology, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-319-26974-0_17

Download citation

Publish with us

Policies and ethics