Skip to main content

Progress in Sorption Thermal Energy Storage

  • Chapter
  • First Online:
Energy Solutions to Combat Global Warming

Part of the book series: Lecture Notes in Energy ((LNEN,volume 33))

Abstract

There are various ways for thermal energy storage, such as sensible, latent, sorption, and chemical reaction. Sensible thermal energy storage and latent thermal energy storage are already in use. However, the drawbacks of bulk size (small energy storage density) and the strict requirement for thermal insulation have hindered their wide applications. Sorption and thermochemical reactions used for thermal energy storage have been considered as a future great potential product for thermal energy storage of solar energy, waste heat. or even electric heating, etc. The market thus needs such a “thermal battery,” which should be with a variety of kWhs capacities. Several key challenges remain in the way of the development of an efficient sorption thermal battery: sorption materials with high storage density and low cost, sorption bed with good heat and mass transfer to ensure charging power and discharging power, being stable after repeated cycles, minimum heat capacity ratio between the inert materials to the sorption thermal energy; control of the output temperature and power to meet the use demand. In this chapter, recent progress in sorption thermal energy storage, including materials, systems, and demonstrations, were described. The detailed future researches and developing maps were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

P :

Pressure (Pa)

T :

Temperature (K)

x :

Sorbent uptake quantity

Amb:

Ambient

c:

Condensation

des:

Desorption

e:

Evaporation

max:

Maximum

min:

Minimum

sor:

Sorption

AlPOs:

Aluminophosphates

CCHP:

Combined cooling heating and power generation

COP:

Coefficient of performance

CSPM:

Composite sorbent “Salt Porous Matrix”

DRH:

Deliquescence relative humidity

ENG-TSA:

Expanded graphite treated with sulfuric acid

FAM-Z02:

Functional adsorption material type z02

HSD:

Heat storage density (Wh/kg or kWh/m3)

IEA-SHC:

Solar heating and cooling program of international energy agency

MOFs:

Metal organic frameworks

PCMs:

Phase change materials

RH:

Relative humidity

SAPOs:

Silico-aluminophosphates

SCP:

Specific cooling power (W/kg)

TES:

Thermal energy storage

References

  1. N’Tsoukpoe KE, Liu H, Le Pierrès N, Luo LG (2009) A review on long-term sorption solar energy storage. Renew Sust Energ Rev 13:2385–2396

    Article  Google Scholar 

  2. Wang RZ, Yu X, Ge TS, Li TX (2012) The present and future of residential refrigeration, power generation and energy storage. Appl Therm Eng 53:256–270

    Article  Google Scholar 

  3. Yu N, Wang RZ, Wang LW (2013) Sorption thermal storage for solar energy. Prog Energ Combust 39:489–514

    Article  Google Scholar 

  4. Narayanan S, Li X, Yang S, Kim H, Umans A, McKay IS et al (2015) Thermal battery for portable climate control. Appl Energ 149:104–116

    Article  Google Scholar 

  5. Li TX, Wang RZ, Kiplagat JK (2013) A target-oriented solid-gas thermochemical sorption heat transformer for integrated energy storage and energy upgrade. AIChE J 59:1334–1347

    Article  Google Scholar 

  6. Bales C (2008) IEA-SHC Task 32 Final Report of Subtask B “Chemical and sorption storage”

    Google Scholar 

  7. Bales C, Nordlander S (2005) TCA evaluation—Lab measurements, modelling and system simulations

    Google Scholar 

  8. Stitou D, Mazet N, Mauran S (2011) Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning. Energy 41:261–270

    Article  Google Scholar 

  9. Lahmidi H, Mauran S, Goetz V (2006) Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems. Sol Energy 80:883–893

    Article  Google Scholar 

  10. Mauran S, Lahmidi H, Goetz V (2008) Solar heating and cooling by a thermochemical process: First experiments of a prototype storing 60 kWh by a solid/gas reaction. Sol Energy 82:623–636

    Article  Google Scholar 

  11. Kim DS, Infante Ferreira CA (2008) Solar refrigeration options—a state-of-the-art review. Int J Refrig 31:3–15

    Article  Google Scholar 

  12. Wang LW, Wang RZ, Oliveira RG (2009) A review on adsorption working pairs for refrigeration. Renew Sust Energ Rev 13:518–534

    Article  Google Scholar 

  13. Aristov YI (2007) New family of solid sorbents for adsorptive cooling: Material scientist approach. J Eng Thermaphys-Rus 16:63–72

    Article  Google Scholar 

  14. Aristov YI (2012) Adsorptive transformation of heat: principles of construction of adsorbents database. Appl Therm Eng 42:18–24

    Article  Google Scholar 

  15. Gordeeva LG, Aristov YI (2012) Composites ‘salt inside porous matrix’ for adsorption heat transformation: A current state-of-the-art and new trends. Int J Low-Carbon Technol 7:288–302

    Article  Google Scholar 

  16. Aristov YI (2013) Challenging offers of material science for adsorption heat transformation: a review. Appl Therm Eng 50:1610–1618

    Article  Google Scholar 

  17. Wongsuwan W, Kumar S, Neveu P, Meunier F (2001) A review of chemical heat pump technology and applications. Appl Therm Eng 21:1489–1519

    Article  Google Scholar 

  18. Weber R, Dorer V (2008) Long-term heat storage with NaOH. Vacuum 82:708–716

    Article  Google Scholar 

  19. Deng J, Wang RZ, Han GY (2011) A review of thermally activated cooling technologies for combined cooling, heating and power systems. Prog Energ Combust 37:172–203

    Article  Google Scholar 

  20. Weber R (2010) Heat storage with NaOH. In: Proceedings of the international conference on solar heating, cooling and buildings (Eurosun 2010), Graz, Austria

    Google Scholar 

  21. Liu H, N’Tsoukpoe KE, Le Pierres N, Luo L (2011) Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples. Energ Convers Manage 52:2427–2436

    Article  Google Scholar 

  22. N’Tsoukpoe KE, Le Pierrès N, Luo L (2013) Experimentation of a LiBr-H2O absorption process for long-term solar thermal storage: prototype design and first results. Energy 53:179–198

    Article  Google Scholar 

  23. Li MZ, Zhang XL, Shi WX, Shi L (2013) Study of absorption energy storage device. Conference Study of absorption energy storage device, Huhehaote, China

    Google Scholar 

  24. Lourdudoss S, Stymne H (1987) Energy storing absorption heat pump process. Int J Energy Res 11:263–274

    Article  Google Scholar 

  25. Bolin G (2005) Chemical heat pump working according to the hybrid principle. International patent publication NO. WO 2005/054757 A1

    Google Scholar 

  26. Olsson RM, Kaarebring-Olsson, Jonsson S (2000) A chemical heat pump. International patent publication NO. WO 00/37864

    Google Scholar 

  27. Olsson R, Bolin G (2007) Chemical heat pump working with a hybird substance. International patent publication NO. WO 2007/139476 A1

    Google Scholar 

  28. Blackman C, Bales C (2014) Experimental evaluation of a novel absorption heat pump module for solar cooling applications. In: Proceedings of the international sorption heat pump conference (ISHPC 2014), Washington DC, USA

    Google Scholar 

  29. Bales C (2008) IEA-SHC Task 32 Report B4 of Subtask B “Chemical and sorption storage”

    Google Scholar 

  30. Quinnell JA, Davidson JH, Burch J (2011) Liquid calcium chloride solar storage: Concept and analysis. J Sol Energ Eng-Trans ASME 133:011010-1–011010-8

    Article  Google Scholar 

  31. Quinnell JA, Davidson JH (2013) Heat and mass transfer during heating of a hybrid absorption/sensible storage tank. Sol Energy

    Google Scholar 

  32. Quinnell JA, Davidson JH (2013) Buoyancy Driven Mass Transfer in a Liquid Desiccant Storage Tank. J Sol Energy Eng-Trans ASME 135:041009

    Article  Google Scholar 

  33. Quinnell JA, Davidson JH (2012) Mass transfer during sensible charging of a hybrid absorption/sensible storage tank. Energy Procedia 30:353–361

    Article  Google Scholar 

  34. Shimooka S, Oshima K, Hidaka H, Takewaki T, Kakiuchi H, Kodama A et al (2007) The evaluation of direct cooling and heating desiccant device coated with FAM. J Chem Eng Jpn 40:1330–1334

    Article  Google Scholar 

  35. Li G, Qian S, Lee H, Hwang Y, Radermacher R (2014) Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application. Energy 65:675–691

    Article  Google Scholar 

  36. Bales C (2008) IEA-SHC Task 32 Report B2 of Subtask B “Chemical and sorption storage”

    Google Scholar 

  37. Bales C (2008) IEA-SHC Task 32 Report B3 of Subtask B “Chemical and sorption storage”

    Google Scholar 

  38. Jaehnig D, Hausner R, Wagner W, Isaksson C (2006) Thermo-chemical storage for solar space heating in single-family house. In: Conference thermo-chemical storage for solar space heating in single-family house, Stockton, USA

    Google Scholar 

  39. Lu YZ, Wang RZ, Zhang M, Jiangzhou S (2003) Adsorption cold storage system with zeolite–water working pair used for locomotive air conditioning. Energ Convers Manage 44:1733–1743

    Article  Google Scholar 

  40. Hauer A (2007) Adsorption systems for TES-design and demonstration projects. In: Paksoy HÖ (ed) Thermal energy storage for sustainable energy consumption. Springer, Netherlands, pp 409–427

    Chapter  Google Scholar 

  41. Hauer A (2002) Thermal energy storage with zeolite for heating and cooling applications. In: Conference thermal energy storage with zeolite for heating and cooling applications, Shanghai, China. Science press, pp 385–90

    Google Scholar 

  42. Mette B, Kerskes H, Drück H (2012) Concepts of long-term thermochemical energy storage for solar thermal applications–selected examples. Energy Procedia 30:321–330

    Article  Google Scholar 

  43. IEA (2013) SHC solar update (June 2013). http://www.iea.org/media/openbulletin/SolarUpdateJun13.pdf. Accessed 24 Nov 2013

  44. Hauer A, Fischer F (2011) Open adsorption system for an energy efficient dishwasher. Chem-Ing-Tech 83:61–66

    Article  Google Scholar 

  45. Boer Rd, Haije WG, Veldhuis JBJ (2003) Determination of structural, thermodynamic and phase properties in the Na2S–H2O system for application in a chemical heat pump. Thermochim Acta 395:3–19

    Article  Google Scholar 

  46. Boer Rd, Haije WG, Veldhuis JBJ, Smeding SF (2004) Solid-sorption cooling with integrated thermal storage: the SWEAT prototype. In: Proceedings of the 3rd international heat powered cycles conference (HPC 2004), Larnaca, Cyprus

    Google Scholar 

  47. Lammak K, Wongsuwan W, Kiatsiriroj T (2004) Investigation of modular chemical energy storage performance. In: Conference investigation of modular chemical energy storage performance, Hua Hin, Thailand

    Google Scholar 

  48. Michel B, Mazet N, Neveu P (2014) Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance. Appl Energ 129:177–186

    Article  Google Scholar 

  49. Michel B, Neveu P, Mazet N (2014) Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications. Energy 72:702–716

    Article  Google Scholar 

  50. Zondag HA, Kikkert BWJ, Smeding SF, Bakker M (2011) Thermochemical seasonal solar heat storage with MgCl2·6H2O: First upscaling of the reactor. In: Proceedings of the international conference for sustainable energy storage, Belfast, Ulster, 21–25 February 2011

    Google Scholar 

  51. Zondag H, Kikkert B, Smeding S, Boer Rd, Bakker M (2013) Prototype thermochemical heat storage with open reactor system. Appl Energ 109:360–365

    Article  Google Scholar 

  52. Van Essen VM, Zondag HA, Cot Gores J, Bleijendaal LPJ, Bakker M, Schuitema R et al (2009) Characterization of MgSO4 hydrate for thermochemical seasonal heat storage. J Sol Energ Eng-Trans ASME 131:0410141–0410147

    Google Scholar 

  53. Mauer LJ, Taylor LS (2010) Water-solids interactions: deliquescence. Annu Rev Food Sci Technol 1:41–63

    Article  Google Scholar 

  54. Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand 81:89–96

    Article  MathSciNet  Google Scholar 

  55. Zhu DS, Wu HJ, Wang SW (2006) Experimental study on composite silica gel supported CaCl2 sorbent for low grade heat storage. Int J Therm Sci 45:804–813

    Article  Google Scholar 

  56. Daou K, Wang RZ, Xia ZZ, Yang GZ (2007) Experimental comparison of the sorption and refrigerating performances of a CaCl2 impregnated composite adsorbent and those of the host silica gel. Int J Refrig 30:68–75

    Article  Google Scholar 

  57. Gong LX, Wang RZ, Xia ZZ, Chen CJ (2010) Adsorption equilibrium of water on a composite adsorbent employing lithium chloride in silica gel. J Chem Eng Data 55:2920–2923

    Article  Google Scholar 

  58. Yu N, Wang RZ, Lu ZS, Wang LW (2014) Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage. Chem Eng Sci 111:73–84

    Article  Google Scholar 

  59. Chan KC, Chao CYH, Sze-To GN, Hui KS (2012) Performance predictions for a new zeolite 13X/CaCl2 composite adsorbent for adsorption cooling systems. Int J Heat Mass Transf 55:3214–3224

    Article  Google Scholar 

  60. Hongois S, Kuznik F, Stevens P, Roux J-J (2011) Development and characterisation of a new MgSO4 − zeolite composite for long-term thermal energy storage. Sol Energ Mat Sol C 95:1831–1837

    Article  Google Scholar 

  61. Whiting GT, Grondin D, Stosic D, Bennici S, Auroux A (2014) Zeolite-MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption. Sol Energ Mat Sol C 128:289–295

    Article  Google Scholar 

  62. Yu N, Wang RZ, Lu ZS, Wang LW, Ishugah TF (2014) Evaluation of a three-phase sorption cycle for thermal energy storage. Energy 67:468–478

    Article  Google Scholar 

  63. Yu N, Wang RZ, Lu ZS, Wang LW (2015) Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage. Int J Heat Mass Transf 84:660–670

    Article  Google Scholar 

  64. Michel B, Mazet N, Mauran S, Stitou D, Xu J (2012) Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high density reactive bed. Energy 47:553–563

    Article  Google Scholar 

  65. Li TX, Wang RZ, Kiplagat JK, Kang Y (2013) Performance analysis of an integrated energy storage and energy upgrade thermochemical solid-gas sorption system for seasonal storage of solar thermal energy. Energy 50:454–467

    Article  Google Scholar 

  66. Kerskes H, Mette B, Bertsch F, Asenbeck S, Drück H (2012) Chemical energy storage using reversible solid/gas-reactions (CWS)–results of the research project. Energy Procedia 30:294–304

    Article  Google Scholar 

  67. Mette B, Kerskes H, Drück H, Müller-Steinhagen H (2013) New highly efficient regeneration process for thermochemical energy storage. Appl Energ 109:352–359

    Article  Google Scholar 

  68. Wu HJ, Wang SW, Zhu DS (2007) Effects of impregnating variables on dynamic sorption characteristics and storage properties of composite sorbent for solar heat storage. Sol Energy 81:864–871

    Article  Google Scholar 

  69. Wu H, Wang S, Zhu D, Ding Y (2009) Numerical analysis and evaluation of an open-type thermal storage system using composite sorbents. Int J Heat Mass Transf 52:5262–5265

    Article  MATH  Google Scholar 

  70. Liu H, Nagano K, Sugiyama D, Togawa J, Nakamura M (2013) Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat. Int J Heat Mass Transf 65:471–480

    Article  Google Scholar 

  71. Henninger SK, Schmidt FP, Henning HM (2010) Water adsorption characteristics of novel materials for heat transformation applications. Appl Therm Eng 30:1692–1702

    Article  Google Scholar 

  72. Henninger SK, Jeremias F, Kummer H, Schossig P, Henning H-M (2012) Novel sorption materials for solar heating and cooling. Energy Procedia 30:279–288

    Article  Google Scholar 

  73. Wang LW, Metcalf SJ, Critoph RE, Thorpe R, Tamainot-Telto Z (2011) Thermal conductivity and permeability of consolidated expanded natural graphite treated with sulphuric acid. Carbon 49:4812–4819

    Article  Google Scholar 

  74. Wang LW, Metcalf SJ, Critoph RE, Thorpe R, Tamainot-Telto Z (2012) Development of thermal conductive consolidated activated carbon for adsorption refrigeration. Carbon 50:977–986

    Article  Google Scholar 

  75. Hauer A (2014) Open adsorption system for an energy efficient dishwasher: from thermodynamics to the final product (Keynote Speech). In: Proceedings of the international sorption heat pump conference—ISHPC2014, Washington, USA

    Google Scholar 

  76. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energ Convers Manage 45:1597–1615

    Article  Google Scholar 

  77. Berthiaud J (2007) Procédé à sorption solide/gaz pour le transport de chaleur et de froid à longue distance: PROMES: Perpignan, France

    Google Scholar 

Download references

Acknowledgments

This work were supported by the key project of the Natural Science Foundation of China for international academic exchanges under contract the No. 51020105010 and the project of the Natural Science Foundation of China under the contract No. 51206105. The support from The Ministry of education innovation team (IRT 1159) was also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yu, N., Wang, R.Z., Li, T.X., Wang, L.W. (2017). Progress in Sorption Thermal Energy Storage. In: Zhang, X., Dincer, I. (eds) Energy Solutions to Combat Global Warming. Lecture Notes in Energy, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-26950-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26950-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26948-1

  • Online ISBN: 978-3-319-26950-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics