Skip to main content

Exergy Approach to Evaluate Performance of a Mini Class Turboprop Engine

  • Chapter
  • First Online:
Energy Solutions to Combat Global Warming

Part of the book series: Lecture Notes in Energy ((LNEN,volume 33))

  • 2546 Accesses

Abstract

In this chapter, performance assessment of a mini class turboprop engine is presented. Exergy analysis is used for this purpose on the basis of applicability on thermal systems. As a result of the component-based exergy analysis, relative irreversibility of the combustion chamber is higher relatively. Exergy destruction rates within the air compressor, combustion chamber and gas turbine components are 24.08 kW, 100.76 kW and 15.80 kW respectively. Additionally, exergy efficiencies of the components are 74.11, 69.68 and 98.99 % in order of air compressor, combustion chamber and gas turbine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( \dot{E} \) :

Energy rate (kW)

\( {\dot{\text{E}}\text{x}} \) :

Exergy rate (kW)

\( {\dot{\text{I}}\text{P}} \) :

Improvement potential (kW)

\( \dot{Q} \) :

Heat rate (kW)

\( \dot{W} \) :

Work rate (kW)

\( \dot{m} \) :

Mass flow rate (kg s−1)

\( h \) :

Specific enthalpy (kJ kg−1)

\( M \) :

Molar weight (kg kmol−1)

\( N \) :

Mole number (kmol)

\( P \) :

Pressure (kPa)

\( R \) :

Gas constant (kJ kmol−1 K−1)

\( \bar{R} \) :

Universal gas constant (kJ kmol−1 K−1)

\( T \) :

Temperature (K)

\( c \) :

Specific heat capacity (kJ kg−1 K−1)

\( {\text{d}} \) :

Differential

\( {\text{ex}} \) :

Specific exergy (MJ kg−1)

\( {\text{ke}} \) :

Specific kinetic energy (kJ kg−1)

\( {\text{pe}} \) :

Specific potential energy (kJ kg−1)

\( s \) :

Specific entropy (kJ kg−1 K−1)

\( \delta \) :

Fuel depletion rate

\( \varepsilon \) :

Exergy efficiency

\( \xi \) :

Productivity rate

\( \chi \) :

Relative irreversibility

\( 0 \) :

Ambient conditions

\( {\text{heat}} \) :

Heat transfer related

\( {\text{air}} \) :

Air

\( {\text{dest}} \) :

Destruction

\( {\text{fuel}} \) :

Fuel

\( {\text{gas}} \) :

Combustion gaseous

\( {\text{in}} \) :

Inlet

\( j \) :

jth constituent of the combustion gas

\( {\text{loss}} \) :

Loss

\( {\text{mass}} \) :

Mass transfer related

\( {\text{out}} \) :

Outlet

\( p \) :

Constant pressure

\( {\text{work}} \) :

Work related

\( {\text{CH}} \) :

Chemical

\( {\text{KE}} \) :

Kinetic

\( {\text{PE}} \) :

Potential

\( {\text{PH}} \) :

Physical

\( {\text{TH}} \) :

Thermal

AC:

Air compressor

CC:

Combustion chamber

GT:

Gas turbine

References

  1. Dincer I, Rosen MA (2007) Exergy: energy, environment, and sustainable development. Elsevier, Oxford

    Google Scholar 

  2. Dincer I, Cengel YA (2001) Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 3:116–149

    Article  Google Scholar 

  3. Rosen MA, Dincer I (1999) Thermal storage and exergy analysis: the impact of stratification. Trans Can Soc Mech Eng 23:173–186

    Google Scholar 

  4. Šılhavý M (1982) On the second law of thermodynamics II. Inequalities for cyclic processes. Czech J Phys B 32:1073–1099

    Article  MathSciNet  Google Scholar 

  5. Dreyer W, Müller WH, Weiss W (2000) Tales of thermodynamics and obscure applications of the second law. Continuum Mech Thermodyn 12:151–184

    Google Scholar 

  6. Cengel YA, Wood B, Dincer I (2002) Is bigger thermodynamically better. Exergy Int J 2:62–68

    Article  Google Scholar 

  7. Tsatsaronis G (1993) Thermoeconomic analysis and optimization of energy systems. Prog Energy Combust Sci 19:227–257

    Article  Google Scholar 

  8. Bejan A (1982) Second-law analysis in heat transfer and thermal design. Adv Heat Transf. 15:1–58

    Article  Google Scholar 

  9. Cengel YA, Boles MA (2011) Thermodynamics: an engineering approach. McGraw-Hill, New York

    Google Scholar 

  10. Bejan A, Tsatsaronis G, Moran MJ (1996) Thermal design and optimization. Wiley

    Google Scholar 

  11. Romero JC, Linares P (2014) Exergy as a global energy sustainability indicator a review of the state of the art. Renew Sustain Energy Rev 33:427–442

    Article  Google Scholar 

  12. Van Gool W (1992) Exergy analysis of industrial processes. Energy 17:791–803

    Article  Google Scholar 

  13. Xiang JY, Cali M, Santarelli M (2004) Calculation for physical and chemical exergy of flows in systems elaborating mixed-phase flows and a case study in an IRSOFC plant. Int J Energy Res 28:101–115

    Article  Google Scholar 

  14. Moran MJ, Shapiro HN, Boettner DD, Bailey MB (2010) Fundamentals of engineering thermodynamics. Wiley, New York

    Google Scholar 

  15. Aydin H, Turan O, Midilli A, Karakoc TH (2013) Energetic and exergetic performance assessment of a turboprop engine at various loads. Int J Exergy 13:543–564

    Article  Google Scholar 

  16. Kotas TJ (1985) The exergy method of thermal plant analysis. Anchor Brendon Ltd.

    Google Scholar 

  17. Heywood JB (1988) Internal combustion engine fundamentals. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

The authors gladly thank the Faculty of Aeronautics and Astronautics, Anadolu University for supporting the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kahraman Coban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coban, K., Şöhret, Y., Sogut, M.Z., Turan, O., Karakoc, T.H. (2017). Exergy Approach to Evaluate Performance of a Mini Class Turboprop Engine. In: Zhang, X., Dincer, I. (eds) Energy Solutions to Combat Global Warming. Lecture Notes in Energy, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-26950-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26950-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26948-1

  • Online ISBN: 978-3-319-26950-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics