Skip to main content

Mechanistic Pathways of Non-Enzymatic Flavor Formation

  • Chapter
Springer Handbook of Odor

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter focusses on the formation of flavor active structures by mechanisms based on the degradation of reducing carbohydrates in the presence of amines. As model reactions have led to the elucidation of a confusing diversity of compounds, special attention is given to the understanding of the basic reaction pathways explaining the evolution of the most abundant odorants predominately shaping the aroma profile of most foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Ledl, E. Schleicher: New aspects of the Maillard reaction in foods and in the human body, Angew. Chem. Int. Ed. Engl. 29, 565–594 (1990)

    Article  Google Scholar 

  2. M. Hellwig, T. Henle: Baking, ageing, diabetes: A short history of the Maillard reaction, Angew. Chem. Int. Ed. Engl. 53, 10316–10329 (2014)

    Article  CAS  Google Scholar 

  3. J. Gobert, M.A. Glomb: Degradation of glucose: Reinvestigation of reactive α-dicarbonyl compounds, J. Agric. Food Chem. 57, 8591–8597 (2009)

    Article  CAS  Google Scholar 

  4. M. Smuda, M.A. Glomb: Novel insights into the Maillard catalyzed degradation of maltose, J. Agric. Food Chem. 59, 13254–13264 (2011)

    Article  CAS  Google Scholar 

  5. A. Dunkel, M. Steinhaus, M. Kotthoff, B. Nowak, D. Krautwurst, P. Schieberle, T. Hofmann: Nature’s chemical signatures in human olfaction: A foodborne perspective for future biotechnology, Angew. Chem. Int. Ed. Engl. 53, 7124–7143 (2014)

    Article  CAS  Google Scholar 

  6. P. Schieberle: The carbon module labeling (CAMOLA) technique: A useful tool for identifying transient intermediates in the formation of Maillard-type target molecules, Ann. N.Y. Acad. Sci. 1043, 236–248 (2005)

    Article  CAS  Google Scholar 

  7. K.M. Biemel, J. Conrad, M.O. Lederer: Unexpected carbonyl mobility in aminoketoses: The key to major Maillard crosslinks, Angew. Chem. Int. Ed. Engl. 41, 801–804 (2002)

    Article  CAS  Google Scholar 

  8. M. Smuda, M.A. Glomb: Fragmentation pathways during Maillard-induced carbohydrate degradation, J. Agric. Food Chem. 61, 10198–10208 (2013)

    Article  CAS  Google Scholar 

  9. Y.V. Pfeifer, L.W. Kroh: Investigation of reactive α-dicarbonyl compounds generated from the Maillard reaction of l-methionine with reducing sugars via their quinoxaline derivatives, J. Agric. Food Chem. 58, 8293–8299 (2010)

    Article  CAS  Google Scholar 

  10. M. Voigt, M. Smuda, C. Pfahler, M.A. Glomb: Oxygen-dependent fragmentation reactions during the degradation of 1-deoxy-d-erythro-hexo-2,3-diulose, J. Agric. Food Chem. 58, 5685–5691 (2010)

    Article  CAS  Google Scholar 

  11. P.J. Thornalley, A. Langborg, H.S. Minhas: Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose, Biochem. J. 344, 109–116 (1999)

    Article  CAS  Google Scholar 

  12. T. Davidek, S. Devaud, F. Robert, I. Blank: Sugar fragmentation in the Maillard reaction cascade: Isotope labeling studies on the formation of acetic acid by a hydrolytic β-dicarbonyl cleavage mechanism, J. Agric. Food Chem. 54, 6667–6676 (2006)

    Article  CAS  Google Scholar 

  13. M. Voigt, M.A. Glomb: Reactivity of 1-deoxy-d-erythro-hexo-2,3-diulose: A key intermediate in the Maillard chemistry of hexoses, J. Agric. Food Chem. 57, 4765–4770 (2009)

    Article  CAS  Google Scholar 

  14. M. Smuda, M.A. Glomb: Maillard degradation pathways of vitamin C, Angew. Chem. Int. Ed. 52, 4887–4891 (2013)

    Article  CAS  Google Scholar 

  15. M. Granvogl, E. Beksan, M. Schieberle: New insights into the formation of aroma-active Strecker aldehydes from 3-oxazolines as transient intermediates, J. Agric. Food Chem. 60, 6312–6322 (2012)

    Article  CAS  Google Scholar 

  16. T. Hofmann, P. Münch, P. Schieberle: Quantitativ model studies on the formation of aroma-active aldehydes and acids by Strecker-type reactions, J. Agric. Food Chem. 48, 434–440 (2000)

    Article  CAS  Google Scholar 

  17. M. Granvogl, S. Bugan, P. Schieberle: Formation of amines and aldehydes from parent amino acids during thermal processing of cocoa and model systems: New insights into pathways of the Strecker reaction, J. Agric. Food Chem. 54, 1730–1739 (2006)

    Article  CAS  Google Scholar 

  18. T. Hofmann, P. Schieberle: Formation of aroma-active Strecker-aldehydes by a direct oxidative degradation of Amadori compounds, J. Agric. Food Chem. 48, 4301–4305 (2000)

    Article  CAS  Google Scholar 

  19. P.V. Guerra, V.A. Yaylayan: Dimerization of azomethine ylides: An alternate route to pyrazine formation in the Maillard reaction, J. Agric. Food Chem. 58, 12523–12529 (2010)

    Article  CAS  Google Scholar 

  20. R. Zamora, R.M. Delgado, F.J. Hildalgo: Chemical conversion of phenylethylamine into phenylacetaldehyde by carbonyl-amine reaction in model systems, J. Agric. Food Chem. 60, 5491–5496 (2012)

    Article  CAS  Google Scholar 

  21. F. Chu, V.A. Yaylayan: Isotope labeling studies in the origin of 3,4-hexandione and 1,2-butandione in an alanine/glucose model system, J. Agric. Food Chem. 57, 9740–9746 (2009)

    Article  CAS  Google Scholar 

  22. A. Adams, V. Polizzi, M. Van Boekel, N. De Kimpe: Formation of pyrazines and a novel pyrrol in Maillard model systems of 1,3-dihydroxyacetone and 2-oxopropanal, J. Agric. Food Chem. 56, 2147–2153 (2008)

    Article  CAS  Google Scholar 

  23. T. Hofmann, P. Schieberle: 2-Oxopropanal, hydroxy-2-propanone, and 1-pyrroline-important intermediates in the generation of the roast-smelling food flavor compounds 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine, J. Agric. Food Chem. 46, 2270–2277 (1998)

    Article  CAS  Google Scholar 

  24. P. Schieberle: The role of free amino acids present in yeast as precursors of the odorants 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine in wheat bread crust, Z. Lebensm.-Unters. Forsch. 191, 206–209 (1990)

    Article  CAS  Google Scholar 

  25. T. Davidek, D. Festring, T. Dufossé, O. Novotny, I. Blank: Study to elucidate formation pathways of selected roast-smelling odorants upon extrusion cooking, J. Agric. Food Chem. 61, 10215–10219 (2013)

    Article  CAS  Google Scholar 

  26. I. Blank, S. Devaud, W. Matthey-Doret, F. Robert: Formation of odorants in Maillard model systems based on l-proline as affected by pH, J. Agric. Food Chem. 51, 3643–3650 (2003)

    Article  CAS  Google Scholar 

  27. D. Rewicki, R. Tressl, U. Ellerbeck, E. Kersten, E. Burgert, M. Gorzynski, R.S. Hauck, B. Helak: Formation and synthesis of some Maillard generated aroma compounds. In: Progress in Flavor Precursor Studies, ed. by P. Schreier, P. Winterhalter (Allured Publishing, Carol Stream 1993) pp. 301–314

    Google Scholar 

  28. T. Hofmann, P. Schieberle: Flavor contribution and formation of the intense roast-smelling odorants 2-propionyl-1-pyrroline and 2-propionyltetrahydropyridine in Maillard-type reactions, J. Agric. Food Chem. 46, 2721–2726 (1998)

    Article  CAS  Google Scholar 

  29. L. Gijs, P. Perpete, A. Timmermans, S. Collin: 3-Methylthiopropionaldehyde as precursor of dimethyl trisulfide in aged beers, J. Agric. Food Chem. 48, 6196–6199 (2000)

    Article  CAS  Google Scholar 

  30. T. Hofmann: Acetylformoin – A chemical switch in the formation of colored Maillard reaction products from hexoses and primary and secondary amino acids, J. Agric. Food Chem. 46, 3918–3928 (1998)

    Article  CAS  Google Scholar 

  31. T. Hofmann, P. Schieberle: Acetylformoin – An important progenitor of 4-hydroxy-2,5-dimethyl-3(2H)-furanone and 2-acetyltetrahydropyridine during thermal food processing, Proc. 6th Wartburg Aroma Symp. Flavor 2000 Perception Release Evaluation Formation Acceptance Nutrition/Health, Eisenach (2001) pp. 311–322

    Google Scholar 

  32. T. Hofmann, P. Schieberle: Identification of potent aroma compounds in termally treated mixtures of glucose/cysteine and rhamnose/cysteine using aroma extract dilution techniques, J. Agric. Food Chem. 45, 898–906 (1997)

    Article  CAS  Google Scholar 

  33. Y. Wang, C.-T. Ho: Formation of 2,5-dimethyl-4-hydroxy-3(2H)-furanone through methylglyoxal: A Maillard reaction intermediate, J. Agric. Food Chem. 56, 7405–7409 (2008)

    Article  CAS  Google Scholar 

  34. I. Blank, L.B. Fay: Formation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone and 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone through Maillard reaction based on pentose sugars, J. Agric. Food Chem. 44, 531–536 (1996)

    Article  CAS  Google Scholar 

  35. K. Takahashi, M. Tadenuma, S. Sato: 3-Hydroxy-4,5-dimethyl-2(5H)-furanone, a burnt flavoring compound from aged sake, Agric. Biol. Chem. 40, 325–330 (1976)

    CAS  Google Scholar 

  36. B. Martin, P.X. Etievant, J.L. Le Quere, P. Schlich: More clues about sensory impact of sotolone in some flor sherry wines, J. Agric. Food Chem. 40, 475–478 (1992)

    Article  CAS  Google Scholar 

  37. I. Blank, J. Lin, R. Fumeaux, D.H. Welti, L.B. Fay: Formation of 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolone) from 4-hydroxy-l-isoleucine and 3-amino-4,5-dimethyl-3,4-dihydro-2(5H)-furanone, J. Agric. Food Chem. 44, 1851–1856 (1996)

    Article  CAS  Google Scholar 

  38. T. Hofmann: Characterization of Intense Odorants in Carbohydrate/Cysteine Model Reactions and Elucidation of Formation Pathways, Ph.D. Thesis, (Technical University Munich, Munich 1996)

    Google Scholar 

  39. O. Novotny: Formation of α-hydroxycarbonyl and α-dicarbonyl compounds during degradation of monosaccharides, Czech J. Food Sci. 25, 119–130 (2007)

    CAS  Google Scholar 

  40. G.A.M. Van den Ouweland: Compounds contributing to beef flavor. Volatile compounds produced by the reaction of 4-hydroxy-5-methyl-3(2H)-furanone and its thio analog with hydrogen sulfide, J. Agric. Food Chem. 23, 501–505 (1975)

    Article  Google Scholar 

  41. C. Cerny, T. Davidek: Formation of aroma compounds from ribose and cysteine during the Maillard reaction, J. Agric. Food Chem. 51, 2714–2721 (2003)

    Article  CAS  Google Scholar 

  42. W. Nedvidek, F. Ledl, P. Fischer: Detection of 5-hydroxymethyl-2-methyl-3(2H)-furanone and of α-dicarbonyl compounds in reaction mixtures of hexoses and pentoses with different amines, Z. Lebensm.-Unters. Forsch. 194, 222–228 (1992)

    Article  CAS  Google Scholar 

  43. T. Hofmann: P. Schieberle: Quantitative model studies on the effectiveness of different precursor systems in the formation of the intense food odorants 2-furfurylthiol and 2-methyl-3-furanthiol, J. Agric. Food Chem. 46, 235–241 (1998)

    Article  CAS  Google Scholar 

  44. R. Silwar, R. Tressl: Gas chromatographic-mass spectrometric investigation of aroma compounds formed in the cysteine-methionine-furfural model system under roasting conditions, Z. Lebensm.-Unters. Forsch. 189, 205–211 (1989)

    Article  CAS  Google Scholar 

  45. S.M. Lee, Y.-J. Jo, Y.-S. Kim: Investigations of the aroma-active compounds formed in the Maillard reaction between glutathione and reducing sugars, J. Agric. Food Chem. 58, 3116–3124 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glomb, M.A. (2017). Mechanistic Pathways of Non-Enzymatic Flavor Formation. In: Buettner, A. (eds) Springer Handbook of Odor. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-26932-0_5

Download citation

Publish with us

Policies and ethics