Skip to main content

Nasal Periceptor Processes

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

There are myriads of odorous molecules that we perceive and it is remarkable that most of us seem to have very similar odor impressions that originate from a specific stimulus and the sense of smell appears to be robust during much of a lifetime. When perceiving scents, olfactory receptor (GlossaryTerm

OR

) proteins are at work to translate chemical information into neuronal signals that are decoded in the olfactory cortex to provide us with an odor image. Proposed in the middle of the last century but only substantiated with intriguing laboratory data during the last decade, there are enzymes expressed at high levels in the olfactory mucosa, and they metabolize xenobiotics including odorants and produce many new chemical species. Examples demonstrate that such perireceptor events can alter the receptor-dependent activation pattern in the olfactory neuroepithelium, which has an impact on the quality and the intensity of odor stimuli. Results that do not seem to fit a model or a hypothesis may make sense if perireceptor events are brought into the equation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APCI:

atmospheric pressure chemical ionization

CE:

carboxyl esterase

EH:

epoxide hydrolase

EOG:

electroolfactogram

FAD:

flavin adenine dinucleotide

GC:

gas chromatography

GPCR:

G protein coupled receptor

HEK:

human embryonic kidney cell

IC50:

half-minimal inhibitory concentration

mOR-EG:

mouse olfactory receptor protein

MS:

mass spectrometry

OB:

olfactory bulb

OBP:

odor binding protein

OR:

olfactory receptor

OTH:

odor detection threshold

PCR:

polymerase chain reaction

RNA:

ribonucleic acid

References

  1. A.F. Blakeslee: Demonstration of differences between people in the sense of smell, Sci. Mon. 41, 72–84 (1935)

    Google Scholar 

  2. J.E. Amoore: Specific anosmia: A clue to the olfactory code, Nature 214, 1095–1098 (1967)

    Article  CAS  Google Scholar 

  3. J.E. Amoore: Evidence for the chemical olfactory code in man, Ann. NY Acad. Sci. 237, 137–143 (1974)

    Article  CAS  Google Scholar 

  4. J.E. Amoore: Specific anosmia and the concept of primary odors, Chem. Senses Flavor 2, 267–281 (1977)

    Article  CAS  Google Scholar 

  5. A. Keller, H. Zhuang, Q. Chi, L.B. Vosshall, H. Matsunami: Genetic variation in a human odorant receptor alters odour perception, Nature 449, 468–472 (2007)

    Article  CAS  Google Scholar 

  6. Y. Hasin-Brumshtein, D. Lancet, T. Olender: Human olfaction: From genomic variation to phenotypic diversity, Trends Genet. 25, 178–184 (2009)

    Article  CAS  Google Scholar 

  7. R.L. Doty: Olfaction in Parkinson’s disease and related disorders, Neurobiol. Dis. 46, 527–552 (2012)

    Article  Google Scholar 

  8. A.S. Mobley, D.J. Rodriguez-Gil, F. Imamura, C.A. Greer: Aging in the olfactory system, Trends Neurosci. 37(2), 77–84 (2013)

    Article  Google Scholar 

  9. B. Gibbons: The intimate sense of small, Natl. Geogr. Mag. 170, 324–361 (1986)

    Google Scholar 

  10. L. Buck, R. Axel: A novel multigene family may encode odorant receptors: A molecular basis for odor recognition, Cell 65, 175–187 (1991)

    Article  CAS  Google Scholar 

  11. C.H. Wetzel, M. Oles, C. Wellerdieck, M. Kuczkowiak, G. Gisselmann, H. Hatt: Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus Laevis oocytes, J. Neurosci. 19, 7426–7433 (1999)

    CAS  Google Scholar 

  12. M. Spehr, G. Gisselmann, A. Poplawski, J.A. Riffell, C.H. Wetzel, R.K. Zimmer, H. Hatt: Identification of a testicular odorant receptor mediating human sperm chemotaxis, Science 299, 2054–2058 (2003)

    Article  CAS  Google Scholar 

  13. G. Sanz, C. Schlegel, J.C. Pernollet, L. Briand: Comparison of odorant specificity of two human olfactory receptors from different phylogenetic classes and evidence for antagonism, Chem. Senses 30, 69–80 (2005)

    Article  CAS  Google Scholar 

  14. K. Schmiedeberg, E. Shirokova, H.P. Weber, B. Schilling, W. Meyerhof, D. Krautwurst: Structural determinants of odorant recognition by the human olfactory receptors OR1A1 and OR1A2, J. Struct Biol. 159, 400–412 (2007)

    Article  CAS  Google Scholar 

  15. H. Saito, Q. Chi, H. Zhuang, H. Matsunami, J.D. Mainland: Odor coding by a Mammalian receptor repertoire, Sci. Signal 2, ra9 (2009)

    Article  Google Scholar 

  16. I. Menashe, O. Man, D. Lancet, Y. Gilad: Different noses for different people, Nat. Genet. 34, 143–144 (2003)

    Article  CAS  Google Scholar 

  17. P. Mombaerts, F. Wang, C. Dulac, S.K. Chao, A. Nemes, M. Mendelsohn, J. Edmondson, R. Axel: Visualizing an olfactory sensory map, Cell 87, 675–686 (1996)

    Article  CAS  Google Scholar 

  18. B.A. Johnson, M. Leon: Chemotopic odorant coding in a mammalian olfactory system, J. Comp. Neurol. 503, 1–34 (2007)

    Article  CAS  Google Scholar 

  19. D.D. Stettler, R. Axel: Representations of odor in the piriform cortex, Neuron 63, 854–864 (2009)

    Article  CAS  Google Scholar 

  20. D.L. Sosulski, M.L. Bloom, T. Cutforth, R. Axel, S.R. Datta: Distinct representations of olfactory information in different cortical centres, Nature 472, 213–216 (2011)

    Article  CAS  Google Scholar 

  21. G.B. Kistiakowsky: On the theory of odors, Science 112, 154–155 (1950)

    Article  CAS  Google Scholar 

  22. A.F. Baradi, G.H. Bourne: Localization of gustatory and olfactory enzymes in the rabbit, and the problems of taste and smell, Nature 168, 977–979 (1951)

    Article  CAS  Google Scholar 

  23. D.E. Hornung, M.M. Mozell: Preliminary data suggesting alteration of odorant molecules by interaction with receptors, Olfact. Taste, Vol. VI, ed. by J. Le Magnen, P. MacLeod (1977) p. 63

    Google Scholar 

  24. A.R. Dahl: The effect of cytochrome P450-dependent metabolism and other enzyme activities on olfaction. In: Molecular Neurobiology of the Olfactory System, ed. by F.L. Margolis, T.V. Getchell (Plenum, New York 1988) pp. 51–70

    Chapter  Google Scholar 

  25. A.R. Dahl, W.M. Hadley, F.F. Hahn, J.M. Benson, R.O. McClellan: Cytochrome P-450-dependent monooxygenases in olfactory epithelium of dogs: Possible role in tumorigenicity, Science 216, 57–59 (1982)

    Article  CAS  Google Scholar 

  26. A.R. Dahl: The inhibition of rat nasal cytochrome P-450-dependent mono-oxygenase by the essence heliotropin (piperonal), Drug Metab. Dispos. 10, 553–554 (1982)

    CAS  Google Scholar 

  27. P. Pelosi: The role of perireceptor events in vertebrate olfaction, Cell Mol. Life Sci. 58, 503–509 (2001)

    Article  CAS  Google Scholar 

  28. R.G. Vogt: Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. In: Insect Pheromone Biochemistry and Molecular Biology, ed. by G.J. Blomquist, R.G. Vogt (Elsevier, London 2003) pp. 391–446

    Chapter  Google Scholar 

  29. R.G. Vogt, L.M. Riddiford: Pheromone binding and inactivation by moth antennae, Nature 293, 161–163 (1981)

    Article  CAS  Google Scholar 

  30. P. Xu, R. Atkinson, D.N. Jones, D.P. Smith: Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons, Neuron 45, 193–200 (2005)

    Article  CAS  Google Scholar 

  31. J.D. Laughlin, T.S. Ha, D.N. Jones, D.P. Smith: Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein, Cell 133, 1255–1265 (2008)

    Article  CAS  Google Scholar 

  32. X. Ding, A.R. Dahl: Olfactory mucosa: Composition, enzymatic localization and metabolism. In: Handbook of Olfaction and Gustation, Vol. 2, ed. by R.L. Doty (Marcel Dekker, New York 2003) pp. 51–73

    Google Scholar 

  33. X. Ding, L.S. Kaminsky: Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts, Annu. Rev. Pharmacol. Toxicol. 43, 149–173 (2003)

    Article  CAS  Google Scholar 

  34. X. Zhang, Q.Y. Zhang, D. Liu, T. Su, Y. Weng, G. Ling, Y. Chen, J. Gu, B. Schilling, X. Ding: Expression of cytochrome p450 and other biotransformation genes in fetal and adult human nasal mucosa, Drug. Metab. Dispos. 33, 1423–1428 (2005)

    Article  CAS  Google Scholar 

  35. T. Su, Z. Bao, Q.Y. Zhang, T.J. Smith, J.Y. Hong, X. Ding: Human cytochrome P450 CYP2A13: Predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, Cancer Res. 60, 5074–5079 (2000)

    CAS  Google Scholar 

  36. P.G. Gervasi, V. Longo, F. Naldi, G. Panattoni, F. Ursino: Xenobiotic-metabolizing enzymes in human respiratory nasal mucosa, Biochem. Pharmacol. 41, 177–184 (1991)

    Article  CAS  Google Scholar 

  37. J.L. Lewis, K.J. Nikula, R. Novak, A.R. Dahl: Comparative localization of carboxylesterase in F344 rat, beagle dog, and human nasal tissue, Anat. Rec. 239, 55–64 (1994)

    Article  CAS  Google Scholar 

  38. M.S. Bogdanffy, M.L. Taylor, D.R. Plowchalk: Metabolism of vinyl acetate by human nasal tissues using a mini vapor uptake technique, Toxicologist 15, 6 (1995)

    Google Scholar 

  39. S.T. Saarikoski, H.A. Wikman, G. Smith, C.H. Wolff, K. Husgafvel-Pursiainen: Localization of cytochrome P450 CYP2S1 expression in human tissues by in situ hybridization and immunohistochemistry, J. Histochem. Cytochem. 53, 549–556 (2005)

    Article  CAS  Google Scholar 

  40. T. Green, R. Lee, A. Toghill, S. Meadowcroft, V. Lund, J. Foster: The toxicity of styrene to the nasal epithelium of mice and rats: Studies on the mode of action and relevance to humans, Chem. Biol. Interact. 137, 185–202 (2001)

    Article  CAS  Google Scholar 

  41. N.S. Krishna, T.V. Getchell, N. Dhooper, Y.C. Awasthi, M.L. Getchell: Age- and gender-related trends in the expression of glutathione S-transferases in human nasal mucosa, Ann. Otol. Rhinol. Laryngol. 104, 812–822 (1995)

    Article  CAS  Google Scholar 

  42. G. Jedlitschky, A.J. Cassidy, M. Sales, N. Pratt, B. Burchell: Cloning and characterization of a novel human olfactory UDP-glucuronosyltransferase, Biochem. J. 340, 837–843 (1999)

    Article  CAS  Google Scholar 

  43. X.X. Ding, M.J. Coon: Induction of cytochrome P-450 isozyme 3a (P-450IIE1) in rabbit olfactory mucosa by ethanol and acetone, Drug Metab. Dispos. 18, 742–745 (1990)

    CAS  Google Scholar 

  44. N. Thiebaud, M. Sigoillot, J. Chevalier, Y. Artur, J.M. Heydel, A.M. Le Bon: Effects of typical inducers on olfactory xenobiotic-metabolizing enzyme, transporter, and transcription factor expression in rats, Drug Metab. Dispos. 38, 1865–1875 (2010)

    Article  CAS  Google Scholar 

  45. B. Meunier, S.P. de Visser, S. Shaik: Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes, Chem. Rev. 104, 3947–3980 (2004)

    Article  CAS  Google Scholar 

  46. F.P. Guengerich: Mechanisms of cytochrome P450 substrate oxidation: MiniReview, J. Biochem. Mol. Toxicol. 21, 163–168 (2007)

    Article  CAS  Google Scholar 

  47. F.P. Guengerich: Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity, Chem. Res. Toxicol. 14, 611–650 (2001)

    Article  CAS  Google Scholar 

  48. F.P. Guengerich: Cytochrome p450 and chemical toxicology, Chem. Res. Toxicol. 21, 70–83 (2008)

    Article  CAS  Google Scholar 

  49. M. Ingelman-Sundberg: Pharmacogenetics of cytochrome P450 and its applications in drug therapy: The past, present and future, Trends Pharmacol. Sci. 25, 193–200 (2004)

    Article  CAS  Google Scholar 

  50. U.M. Zanger, M. Schwab: Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation, Pharmacol. Ther. 138, 103–141 (2013)

    Article  CAS  Google Scholar 

  51. A.M. Jeffrey, M.J. Iatropoulos, G.M. Williams: Nasal cytotoxic and carcinogenic activities of systemically distributed organic chemicals, Toxicol. Pathol. 34, 827–852 (2006)

    Article  CAS  Google Scholar 

  52. C. Liu, X. Zhuo, F.J. Gonzalez, X. Ding: Baculovirus-mediated expression and characterization of rat CYP2A3 and human CYP2a6: role in metabolic activation of nasal toxicants, Mol. Pharmacol. 50, 781–788 (1996)

    CAS  Google Scholar 

  53. S.S. Hecht, J.B. Hochalter, P.W. Villalta, S.E. Murphy: 2’-Hydroxylation of nicotine by cytochrome P450 2A6 and human liver microsomes: Formation of a lung carcinogen precursor, Proc. Natl. Acad. Sci. USA 97, 12493–12497 (2000)

    Article  CAS  Google Scholar 

  54. V. Megaraj, X. Zhou, F. Xie, Z. Liu, W. Yang, X. Ding: Role of CYP2A13 in the bioactivation and lung tumorigenicity of the tobacco-specific lung procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone: In vivo studies using a CYP2A13-humanized mouse model, Carcinogenesis 35, 131–137 (2014)

    Article  CAS  Google Scholar 

  55. Y. Weng, C. Fang, R.J. Turesky, M. Behr, L.S. Kaminsky, X. Ding: Determination of the role of target tissue metabolism in lung carcinogenesis using conditional cytochrome P450 reductase-null mice, Cancer Res. 67, 7825–7832 (2007)

    Article  CAS  Google Scholar 

  56. S.S. Hecht: Progress and challenges in selected areas of tobacco carcinogenesis, Chem. Res. Toxicol. 21, 160–171 (2008)

    Article  Google Scholar 

  57. H. Wang, W. Tan, B. Hao, X. Miao, G. Zhou, F. He, D. Lin: Substantial reduction in risk of lung adenocarcinoma associated with genetic polymorphism in CYP2A13, the most active cytochrome P450 for the metabolic activation of tobacco-specific carcinogen NNK, Cancer Res. 63, 8057–8061 (2003)

    CAS  Google Scholar 

  58. X. Zhang, T. Su, Q.Y. Zhang, J. Gu, M. Caggana, H. Li, X. Ding: Genetic polymorphisms of the human CYP2A13 gene: Identification of single-nucleotide polymorphisms and functional characterization of an Arg257Cys variant, J. Pharmacol. Exp. Ther. 302, 416–423 (2002)

    Article  CAS  Google Scholar 

  59. C. Cauffiez, J.M. Lo-Guidice, S. Quaranta, D. Allorge, D. Chevalier, S. Cenee, R. Hamdan, M. Lhermitte, J.J. Lafitte, C. Libersa, J.F. Colombel, I. Stucker, F. Broly: Genetic polymorphism of the human cytochrome CYP2A13 in a French population: Implication in lung cancer susceptibility, Biochem. Biophys. Res. Commun. 317, 662–669 (2004)

    Article  CAS  Google Scholar 

  60. K.E. Schlicht, N. Michno, B.D. Smith, E.E. Scott, S.E. Murphy: Functional characterization of CYP2A13 polymorphisms, Xenobiotica 37, 1439–1449 (2007)

    Article  CAS  Google Scholar 

  61. X. Zhang, J. D’Agostino, H. Wu, Q.Y. Zhang, L. von Weymarn, S.E. Murphy, X. Ding: CYP2A13: Variable expression and role in human lung microsomal metabolic activation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, J. Pharmacol. Exp. Ther. 323, 570–578 (2007)

    Article  CAS  Google Scholar 

  62. J. D’Agostino, X. Zhang, H. Wu, G. Ling, S. Wang, Q.Y. Zhang, F. Liu, X. Ding: Characterization of CYP2A13*2, a variant cytochrome P450 allele previously found to be associated with decreased incidences of lung adenocarcinoma in smokers, Drug Metab. Dispos. 36, 2316–2323 (2008)

    Article  Google Scholar 

  63. K.E. Schlicht, J.Z. Berg, S.E. Murphy: Effect of CYP2A13 active site mutation N297A on metabolism of coumarin and tobacco-specific nitrosamines, Drug Metab. Dispos. 37, 665–671 (2009)

    Article  CAS  Google Scholar 

  64. M.N. Timofeeva, S. Kropp, W. Sauter, L. Beckmann, A. Rosenberger, T. Illig, B. Jager, K. Mittelstrass, H. Dienemann, H. Bartsch, H. Bickeboller, J.C. Chang-Claude, A. Risch, H.E. Wichmann: CYP450 polymorphisms as risk factors for early-onset lung cancer: Gender-specific differences, Carcinogenesis 30, 1161–1169 (2009)

    Article  CAS  Google Scholar 

  65. B.D. Smith, J.L. Sanders, P.R. Porubsky, G.H. Lushington, C.D. Stout, E.E. Scott: Structure of the human lung cytochrome P450 2A13, J. Biol. Chem. 282, 17306–17313 (2007)

    Article  CAS  Google Scholar 

  66. B. Schilling: Metabolic method to identify compounds, Patent WO 2006/007751 A3 (2006)

    Google Scholar 

  67. B. Schilling, E. Locher, T. Granier: Smell perception – The role of perireceptor events, Wartburg Symp. Flavour Chem. Biol., ed. by T. Hofmann, W. Meyerhof, P. Schieberle (2010) pp. 55–62

    Google Scholar 

  68. A. Chougnet, W.D. Woggon, E. Locher, B. Schilling: Synthesis and in vitro activity of heterocyclic inhibitors of CYP2A6 and CYP2A13, two cytochrome P450 enzymes present in the respiratory tract, ChemBioChem 10, 1562–1567 (2009)

    Article  CAS  Google Scholar 

  69. B. Schilling, T. Granier, G. Fráter, A. Hanhart: Organic compounds, Patent WO 2008/116338 (2008)

    Google Scholar 

  70. B. Schilling, W.D. Woggon, A. Chougnet, T. Granier, G. Fráter, A. Hanhart: Organic compounds, Patent WO 2008/116339 (2008)

    Google Scholar 

  71. B. Schilling, T. Granier: Organic compounds, Patent 2010/037244 (2010)

    Google Scholar 

  72. L.B. von Weymarn, J.A. Chun, G.A. Knudsen, P.F. Hollenberg: Effects of eleven isothiocyanates on P450 2A6- and 2A13-catalyzed coumarin 7-hydroxylation, Chem. Res. Toxicol. 20, 1252–1259 (2007)

    Article  Google Scholar 

  73. L.B. von Weymarn, Q.Y. Zhang, X. Ding, P.F. Hollenberg: Effects of 8-methoxypsoralen on cytochrome P450 2A13, Carcinogenesis 26, 621–629 (2005)

    Article  Google Scholar 

  74. T. Shimada, D. Kim, N. Murayama, K. Tanaka, S. Takenaka, L.D. Nagy, L.M. Folkman, M.K. Foroozesh, M. Komori, H. Yamazaki, F.P. Guengerich: Binding of Diverse Environmental Chemicals with Human Cytochromes P450 2A13, 2A6, and 1B1 and Enzyme Inhibition, Chem. Res. Toxicol. 26(4), 517–528 (2013)

    Article  CAS  Google Scholar 

  75. T. Shimada, N. Murayama, K. Tanaka, S. Takenaka, F.P. Guengerich, H. Yamazaki, M. Komori: Spectral modification and catalytic inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2A6, and 2A13 by four chemopreventive organoselenium compounds, Chem. Res. Toxicol. 24, 1327–1337 (2011)

    Article  CAS  Google Scholar 

  76. E.S. Stephens, A.A. Walsh, E.E. Scott: Evaluation of inhibition selectivity for human cytochrome P450 2A enzymes, Drug Metab. Dispos. 40, 1797–1802 (2012)

    Article  CAS  Google Scholar 

  77. N.M. DeVore, K.M. Meneely, A.G. Bart, E.S. Stephens, K.P. Battaile, E.E. Scott: Structural comparison of cytochromes P450 2A6, 2A13, and 2E1 with pilocarpine, FEBS Journal 279, 1621–1631 (2012)

    Article  CAS  Google Scholar 

  78. L.C. Blake, A. Roy, D. Neul, F.J. Schoenen, J. Aube, E.E. Scott: Benzylmorpholine analogs as selective inhibitors of lung cytochrome P450 2A13 for the chemoprevention of lung cancer in tobacco users, Pharm. Res. 30, 2290–2302 (2013)

    Article  CAS  Google Scholar 

  79. X. Ding, D.C. Spink, J.K. Bhama, J.J. Sheng, A.D. Vaz, M.J. Coon: Metabolic activation of 2,6-dichlorobenzonitrile, an olfactory-specific toxicant, by rat, rabbit, and human cytochromes P450, Mol. Pharmacol. 49, 1113–1121 (1996)

    CAS  Google Scholar 

  80. F. Xie, J. D’Agostino, X. Zhou, X. Ding: Bioactivation of the nasal toxicant 2,6-dichlorobenzonitrile: An assessment of metabolic activity in human nasal mucosa and identification of indicators of exposure and potential toxicity, Chem. Res. Toxicol. 26, 388–398 (2013)

    Article  CAS  Google Scholar 

  81. Y. Oka, S. Katada, M. Omura, M. Suwa, Y. Yoshihara, K. Touhara: Odorant receptor map in the mouse olfactory bulb: In vivo sensitivity and specificity of receptor-defined glomeruli, Neuron 52, 857–869 (2006)

    Article  CAS  Google Scholar 

  82. A. Nagashima, K. Touhara: Enzymatic conversion of odorants in nasal mucus affects olfactory glomerular activation patterns and odor perception, J. Neurosci. 30, 16391–16398 (2010)

    Article  CAS  Google Scholar 

  83. N. Thiebaud, S. Veloso Da Silva, I. Jakob, G. Sicard, J. Chevalier, F. Menetrier, O. Berdeaux, Y. Artur, J.M. Heydel, A.M. Le Bon: Odorant metabolism catalyzed by olfactory mucosal enzymes influences peripheral olfactory responses in rats, PLoS One 8, e59547 (2013)

    Article  CAS  Google Scholar 

  84. B. Schilling: Method to identify or evaluate compounds useful in the field of fragrances and aromas, Patent WO 2006/007752 A1 (2006)

    Google Scholar 

  85. P. Kraft, J.A. Bajgrowicz, C. Denis, G. Frater: Odds and trends: Recent developments in the chemistry of odorants, Angew. Chem. Int. Ed. Engl. 39, 2980–3010 (2000)

    Article  CAS  Google Scholar 

  86. T. Granier, B. Schilling: Organic compounds, Patent WO 2009/009916 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schilling, B. (2017). Nasal Periceptor Processes. In: Buettner, A. (eds) Springer Handbook of Odor. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-26932-0_28

Download citation

Publish with us

Policies and ethics