Skip to main content

Microsystems for Emulsification

  • Chapter
  • First Online:
Book cover Microsystems for Pharmatechnology

Abstract

Emulsions are important pharmaceutical preparations that are traditionally prepared by techniques like high-shear mixing and high-pressure homogenization. In recent years, microstructured devices have attained increasing importance with regard to emulsion preparation. In particular, the possibility of preparing emulsions with very precisely controlled particle size distribution and/or of continuous manufacturing makes such devices interesting. This chapter introduces microsystem-based techniques operating at low to moderate pressure and high-pressure-based methods. The former comprise direct microchannel and membrane emulsification as well as premix membrane emulsification. The latter particularly focuses on emulsification in a customized microchannel system but also covers aspects of conventional high-pressure emulsification devices. Apart from explaining the respective principles and devices, their use for the preparation of pharmaceutical formulations is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrahamse A, van der Padt A, Boom R (2001) Process fundamentals of membrane emulsification: Simulation with CFD. AIChE J 47(6):1285–1291

    Article  Google Scholar 

  2. Abrahamse A, van Lierop R, van der Sman R et al (2002) Analysis of droplet formation and interactions during cross-flow membrane emulsification. J Membr Sci 204:125–137

    Article  Google Scholar 

  3. Baillie G, Owens M, Halbert G (2002) A synthetic low density lipoprotein particle capable of supporting U937 proliferation in vitro. J Lipid Res 43:69–73

    Google Scholar 

  4. Baker M, Naguib M (2005) Propofol: the challenges of formulation. Anesthesiology 103(4):860–876

    Article  Google Scholar 

  5. Braginsky L, Belevitskaja M (1994) Kinetics of drops breakup in agitated vessels. In: Kulov N (ed) Liquid-liquid systems. Nova Science, Commack

    Google Scholar 

  6. Christov NC, Danov KD, Danova DK et al (2008) The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces. Langmuir 24:1397–1410

    Article  Google Scholar 

  7. Cook E, Lagace A (1985) Apparatus for forming emulsions. US Patent 4,533,254

    Google Scholar 

  8. Cortés-Muñoz M, Chevalier-Lucia D, Dumay E (2009) Characteristics of submicron emulsions prepared by ultra-high pressure homogenisation: effect of chilled or frozen storage. Food Hydrocoll 23:640–654

    Article  Google Scholar 

  9. Drew JLA, Chan R, Du H et al (1990) Preparation of lipid emulsions by pressure extrusion. Biochem Int 22:983–992

    Article  Google Scholar 

  10. Dumay E, Chevalier-Lucia D, Picart-Palmade L et al (2013) Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends Food Sci 31:13–26

    Article  Google Scholar 

  11. Finke et al (2014) Modular overall microsystem for the integrated production and loading of solid lipid nanoparticles. In: Kwade A, Kampen I, Finke JH (eds) Concluding results of the research group mikroPART. “Microsystems for particulate life science products” for 856, funded by the Deutsche Forschungsgemeinschaft (DFG), Braunschweig

    Google Scholar 

  12. Finke JH, Niemann S, Richter C et al (2014) Multiple orifices in customized microsystem high-pressure emulsification: the impact of design and counter pressure on homogenization efficiency. Chem Eng J 248:107–121

    Article  Google Scholar 

  13. Finke JH, Richter C, Gothsch T et al (2014) Coumarin 6 as a fluorescent model drug: how to identify properties of lipid colloidal drug delivery systems via fluorescence spectroscopy? Eur J Lipid Sci Technol 116(9):1234–1246

    Article  Google Scholar 

  14. Finke JH, Schmolke H, Klages C et al (2013) Controlling solid lipid nanoparticle adhesion by polyelectrolyte multilayer surface modifications. Int J Pharm 449(1–2):59–71

    Article  Google Scholar 

  15. Finke J, Schur J, Richter C et al (2012) The influence of customized geometries and process parameters on nanoemulsion and solid lipid nanoparticle production in microsystems. Chem Eng J 209:126–137

    Article  Google Scholar 

  16. Gehrmann S, Bunjes H (2016) Instrumented small scale extruder to investigate the influence of process parameters during premix membrane emulsification. Chem Eng J 284:716–723

    Article  Google Scholar 

  17. Gehrmann S, Bunjes H (2015) Interaction of emulsifier and membrane material during the preparation of nanoemulsions by premix membrane emulsification. In: 1st European conference on pharmaceutics—drug delivery, Reims, France, 13/14 April 2015

    Google Scholar 

  18. Gijsbertsen-Abrahamse A, van der Padt A, Boom R (2004) Status of cross-flow membrane emulsification and outlook for industrial application. J Membr Sci 230(1–2):149–159

    Article  Google Scholar 

  19. Gothsch T, Beinert S, Kampen I et al (2014) Investigation of high pressure dispersion in microsystems with experimental and numerical methods. In: Kwade A, Kampen I, Finke J (eds) Concluding results of the research group mikroPART. “Microsystems for particulate life science products” for 856, funded by the Deutsche Forschungsgemeinschaft (DFG), Braunschweig 2014

    Google Scholar 

  20. Gothsch T, Finke JH, Beinert S et al (2011) Effect of microchannel geometry on high-pressure dispersion and emulsification. Chem Eng Technol 34(3):335–343

    Article  Google Scholar 

  21. Gothsch T, Schilcher C, Richter C et al (2015) High-pressure microfluidic systems (HPMS): flow and cavitation measurements in supported silicon microsystems. Microfluid Nanofluid 18:121–130

    Article  Google Scholar 

  22. Hao D, Gong F, Hu G et al (2008) Controlling factors on droplets uniformity in membrane emulsification: experiment and modeling analysis. Ind Eng Chem Res 47(17):6418–6425

    Article  Google Scholar 

  23. Higashi S, Shimizu M, Nakashima T et al (1995) Arterial-injection chemotherapy for hepatocellular carcinoma using monodispersed poppy-seed oil microdroplets containing fine aqueous vesicles of epirubicin: Initial medical application of a membrane-emulsification technique. Cancer 75:1245–1254

    Article  Google Scholar 

  24. Jafari S, He Y, Bhandari B (2006) Nanoemulsion production by sonication and microfluidization—a comparison. Int J Food Prop 9:475–478

    Article  Google Scholar 

  25. Joscelyne SM, Trägårdh G (2000) Membrane emulsification—a literature review. J Membr Sci 169:107–117

    Article  Google Scholar 

  26. Joseph S, Bunjes H (2012) Preparation of nanoemulsions and solid lipid nanoparticles by premix membrane emulsification. J Pharm Sci 101(7):2479–2489

    Article  Google Scholar 

  27. Joseph S, Bunjes H (2013) Influence of membrane structure on the preparation of colloidal lipid dispersions by premix membrane emulsification. Int J Pharm 446(1–2):59–62

    Article  Google Scholar 

  28. Joseph S, Bunjes H (2014) Evaluation of Shirasu Porous Glass (SPG) membrane emulsification for the preparation of colloidal lipid drug carrier dispersions. Eur J Pharm Biopharm 87(1):178–186

    Article  Google Scholar 

  29. Kazazi-Hyseni F, Landin M, Lathuile A et al (2014) Computer modeling assisted design of monodisperse PLGA microspheres with controlled porosity affords zero order release of an encapsulated macromolecule for 3 months. Pharm Res 31(10):2844–2856

    Article  Google Scholar 

  30. Kobayashi I, Mukataka S, Nakajima M (2004) CFD simulation and analysis of emulsion droplet formation from straight-through microchannels. Langmuir 20(22):9868–9877

    Article  Google Scholar 

  31. Kobayashi I, Mukataka S, Nakajima M (2004) Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels. J Colloid Interface Sci 279(1):277–280

    Article  Google Scholar 

  32. Kobayashi I, Mukataka S, Nakajima M (2005) Production of monodisperse oil-in-water emulsions using a large silicon straight-through microchannel plate. Ind Eng Chem Res 44(15):5852–5856

    Article  Google Scholar 

  33. Kobayashi I, Uemura K, Nakajima M (2007) Formulation of monodisperse emulsions using submicron-channel arrays. Colloids Surf A Physicochem Eng Asp 296(1–3):285–289

    Article  Google Scholar 

  34. Kobayashi I, Wada Y, Uemura K et al (2010) Microchannel emulsification for mass production of uniform fine droplets: integration of microchannel arrays on a chip. Microfluid Nanofluid 8(2):255–262

    Article  Google Scholar 

  35. Kobayashi I, Yasuno M, Iwamoto S et al (2002) Microscopic observation of emulsion droplet formation from a polycarbonate membrane. Colloids Surf A Physicochem Eng Asp 207:185–196

    Article  Google Scholar 

  36. Köhler K, Aguilar F, Hensel A et al (2007) Design of a microstructured system for homogenization of dairy products with high fat content. Chem Eng Technol 30:1590–1595

    Article  Google Scholar 

  37. Kolb G, Viardot K, Wagner G et al (2001) Evaluation of a new high-pressure dispersion unit (HPN) for emulsification. Chem Eng Technol 24:293–296

    Article  Google Scholar 

  38. Kukizaki M (2009) Preparation of solid lipid microcapsules via solid-in-oil-in-water dispersions by premix membrane emulsification. Chem Eng J 151(1–3):387–396

    Article  Google Scholar 

  39. Kukizaki M (2009) Shirasu porous glass (SPG) membrane emulsification in the absence of shear flow at the membrane surface: Influence of surfactant type and concentration, viscosities of dispersed and continuous phases, and transmembrane pressure. J Membr Sci 327(1–2):234–243

    Article  Google Scholar 

  40. Kukizaki M, Goto M (2007) Preparation and evaluation of uniformly sized solid lipid microcapsules using membrane emulsification. Colloids Surf A Physicochem Eng Asp 293(1–3):87–94

    Article  Google Scholar 

  41. Kukizaki M, Wada T (2008) Effect of the membrane wettability on the size and size distribution of microbubbles formed from Shirasu-porous-glass (SPG) membranes. Colloids Surf A Physicochem Eng Asp 317(1–3):146–154

    Article  Google Scholar 

  42. Lamprecht A, Ubrich N, Hombrero Perez N et al (1999) Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification. Int J Pharm 184(1):97–105

    Article  Google Scholar 

  43. Lee L, Hancocks R, Noble I et al (2014) Production of water-in-oil nanoemulsions using high pressure homogenisation: a study on droplet break-up. J Food Eng 131:33–37

    Article  Google Scholar 

  44. Lee L, Norton I (2013) Comparing droplet breakup for a high-pressure valve homogeniser and a Microfluidizer for the potential production of food-grade nanoemulsions. J Food Eng 114(2):158–163

    Article  Google Scholar 

  45. Lepercq-Bost É, Giorgi M, Isambert A et al (2010) Estimating the risk of coalescence in membrane emulsification. J Membr Sci 357(1–2):36–46

    Article  Google Scholar 

  46. Levy M, Benita S (1989) Design and characterization of a submicronized o/w emulsion of diazepam for parenteral use. Int J Pharm 54:103–112

    Article  Google Scholar 

  47. Liu W, Yang X, Winston Ho W (2011) Preparation of uniform-sized multiple emulsions and micro/nano particulates for drug delivery by membrane emulsification. J Pharm Sci 100(1):75–93

    Article  Google Scholar 

  48. Lobo L, Svereika A (2003) Coalescence during emulsification—2. Role of small molecule surfactants. J Colloid Interface Sci 261:498–507

    Article  Google Scholar 

  49. Marie P, Perrier-Cornet J, Gervais P (2002) Influence of major parameters in emulsification mechanisms using a high-pressure jet. J Food Eng 53:43–51

    Article  Google Scholar 

  50. Mehnert W, Mäder K (2012) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 64:83–101

    Article  Google Scholar 

  51. Meleson K, Graves S, Mason TG (2004) Formation of concentrated nanoemulsions by extreme shear. Soft Mater 2(2–3):109–123

    Article  Google Scholar 

  52. Muchow M, Maincent P, Müller R (2008) Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm 34(12):1394–1405

    Article  Google Scholar 

  53. Müller R, Mehnert W, Lucks J et al (1995) Solid lipid nanoparticles (SLN)—an alternative colloidal carrier system for controlled drug delivery. Eur J Pharm Biopharm 41(1):62–69

    Google Scholar 

  54. Nakashima T, Shimizu M, Kukizaki M (1991) Membrane emulsification by microporous glass. Key Eng Mater 61–62:513–516

    Google Scholar 

  55. Nakashima T, Shimizu M, Kukizaki M (2000) Particle control of emulsion by membrane emulsification and its applications. Adv Drug Deliv Rev 45:47–56

    Article  Google Scholar 

  56. Nazir A, Schroën K, Boom R (2010) Premix emulsification: a review. J Membr Sci 362(1–2):1–11

    Article  Google Scholar 

  57. Olson D, White C, Richter R (2004) Effect of pressure and fat content on particle sizes in microfluidized milk. J Dairy Sci 87(10):3217–3223

    Article  Google Scholar 

  58. Owens M, Halbert G (1995) Production and characterization of protein-free analogues of low density lipoprotein. Eur J Pharm Biopharm 41(2):120–126

    Google Scholar 

  59. Paranjpe M, Finke J, Richter C et al (2014) Physicochemical characterization of sildenafil-loaded solid lipid nanoparticle dispersions (SLN) for pulmonary application. Int J Pharm 476(1–2):41–49

    Article  Google Scholar 

  60. Paranjpe M, Müller-Goymann C (2014) Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci 15(4):5852–5873

    Article  Google Scholar 

  61. Paranjpe M, Neuhaus V, Finke JH et al (2013) In vitro and ex vivo toxicological testing of sildenafil-loaded solid lipid nanoparticles. Inhal Toxicol 25(9):536–543

    Article  Google Scholar 

  62. Park S, Yamaguchi T, Nakao S (2001) Transport mechanism of deformable droplets in microfiltration of emulsions. Chem Eng Sci 56:3539–3548

    Article  Google Scholar 

  63. Perrier-Cornet J, Marie P, Gervais P (2005) Comparison of emulsification efficiency of protein-stabilized oil-in-water emulsions using jet, high pressure and colloid mill homogenization. J Food Eng 66(2):211–217

    Article  Google Scholar 

  64. Picart L, Thiebaud M, René M et al (2006) Effects of high pressure homogenisation of raw bovine milk on alkaline phosphatase and microbial inactivation. A comparison with continuous short-time thermal treatments. J Dairy Res 73:454–463

    Article  Google Scholar 

  65. Pinnamaneni S, Das N, Das N (2003) Comparison of oil-in-water emulsions manufactured by microfluidization and homogenization. Pharm Unserer Zeit 58(8):554–558

    Google Scholar 

  66. Pretor S, Bartels J, Lorenz T et al (2015) Cellular uptake of coumarin-6 under microfluidic conditions into HCE-T cells from nanoscale formulations. Mol Pharm 12(1):34–45

    Article  Google Scholar 

  67. Richter C, Demming S, Lorenz T et al (2014) Design and fabrication of micro systems for particulate life science products. In: Kwade A, Kampen I, Finke J (eds) Concluding results of the research group mikroPART. “Microsystems for particulate life science products” FOR 856, funded by the Deutsche Forschungsgemeinschaft (DFG), Braunschweig 2014

    Google Scholar 

  68. Richter C, Krah T, Büttgenbach S (2012) Novel 3D manufacturing method combining microelectrical discharge machining and electrochemical polishing. Microsyst Technol 18(7–8):1109–1118

    Article  Google Scholar 

  69. Richter C, Stegemann D, Vierheller A et al (2013) Innovative process chain for the development of wear resistant 3D metal microsystems. Microelectron Eng 110:392–397

    Article  Google Scholar 

  70. Sawalha H, Purwanti N, Rinzema A et al (2008) Polylactide microspheres prepared by premix membrane emulsification—effects of solvent removal rate. J Membr Sci 310:484–493

    Article  Google Scholar 

  71. Schadler V, Windhab E (2006) Continuous membrane emulsification by using a membrane system with controlled pore distance. Desalination 189(1–3):130–135

    Article  Google Scholar 

  72. Schoenitz M, Finke JH, Melzig S et al (2014) Fouling in a micro heat exchanger during continuous crystallization of solid lipid nanoparticles. Heat Transfer Eng 36(7–8):731–740

    Google Scholar 

  73. Schultz S, Wagner G, Urban K et al (2004) High-pressure homogenization as a process for emulsion formation. Chem Eng Technol 27(4):361–368

    Article  Google Scholar 

  74. Shearer MJ (2009) Vitamin K in parenteral nutrition. Gastroenterology 137(5 Suppl):S105–S118

    Article  Google Scholar 

  75. Siekmann B, Westesen K (1992) Nanopartikuläre Trägersysteme auf Lipidbasis zur parenteralen Applikation schwer wasserlöslicher Arzneistoffe. Pharm Unserer Zeit 21:128–129

    Google Scholar 

  76. Siekmann B, Westesen K (1992) Submicron-sized parenteral carrier systems based on solid lipids. Pharm Pharmacol Lett 1:123–126

    Google Scholar 

  77. SPG Technology Co. L (2015) Introduction of product—SPG membrane. http://www.spg-techno.co.jp/english/product/spg_membrane.shtml. Accessed 18 July 2015

  78. Stang M, Schuchmann H, Schubert H (2001) Emulsification in high-pressure homogenizers. Eng Life Sci 1(4):151–157

    Article  Google Scholar 

  79. Sugiura S, Nakajima M, Kumazawa N et al (2002) Characterization of spontaneous transformation-based droplet formation during microchannel emulsification. J Phys Chem B 106(36):9405–9409

    Article  Google Scholar 

  80. Sugiura S, Nakajima M, Oda T et al (2004) Effect of interfacial tension on the dynamic behavior of droplet formation during microchannel emulsification. J Colloid Interface Sci 269(1):178–185

    Article  Google Scholar 

  81. Sugiura S, Nakajima M, Tong J et al (2000) Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. J Colloid Interface Sci 227(1):95–103

    Article  Google Scholar 

  82. Surh J, Jeong YG, Vladisavljević GT (2008) On the preparation of lecithin-stabilized oil-in-water emulsions by multi-stage premix membrane emulsification. J Food Eng 89(2):164–170

    Article  Google Scholar 

  83. Suzuki K, Fujiki I, Hagura Y (1998) Preparation of corn oil/water and water/corn oil emulsions using PTFE membranes. Food Sci Technol Int Tokyo 4(2):164–167

    Article  Google Scholar 

  84. Suzuki K, Shuto I, Hgura Y (1996) Characteristics of the membrane emulsification method combined with preliminary emulsification for preparing corn oil-in-water emulsions. Food Sci Technol Int Tokyo 2(1):43–47

    Article  Google Scholar 

  85. Talsma H, Ozer A, van Bloois L et al (1989) The size reduction of liposomes with a high pressure homogenizer (MicrofluidizerTM). Characterization of prepared dispersions and comparison with conventional methods. Drug Dev Ind Pharm 15(2):197–202

    Article  Google Scholar 

  86. Tang S, Shridharan P, Sivakumar M (2013) Impact of process parameters in the generation of novel aspirin nanoemulsions—comparative studies between ultrasound cavitation and microfluidizer. Ultrason Sonochem 20:485–497

    Article  Google Scholar 

  87. Tesch S, Freudig B, Schubert H (2003) Production of emulsions in high pressure homogenizers—Part I: Disruption and stabilization of droplets. Chem Eng Technol 26:569–573

    Article  Google Scholar 

  88. Thiebaud M, Dumay E, Picart L et al (2003) High pressure homogenisation of raw bovine milk. Effects on fat globule size distribution and microbial inactivation. Int Dairy J 13:427–439

    Article  Google Scholar 

  89. van der Graaf S, Schroën C, van der Sman R et al (2004) Influence of dynamic interfacial tension on droplet formation during membrane emulsification. J Colloid Interface Sci 277(2):456–463

    Article  Google Scholar 

  90. van der Graaf S, Schroën K, Boom RM (2005) Preparation of double emulsions by membrane emulsification—a review. J Membr Sci 251(1–2):7–15

    Google Scholar 

  91. van der Zwan E, Schroën K, van Dijke K et al (2006) Visualization of droplet break-up in pre-mix membrane emulsification using microfluidic devices. Colloids Surf A Physicochem Eng Asp 277(1–3):223–229

    Article  Google Scholar 

  92. Vivier A, Vuillemard J, St-Pierre S et al (1991) Large-scale blood substitute production using microfluidizer. Biomater Artif Cells Immobilization Biotechnol 19(2):499

    Google Scholar 

  93. Vladisavljević GT et al (2008) Generation of highly uniform droplets using asymmetric microchannels fabricated on a single crystal silicon plate: effect of emulsifier and oil types. Powder Technol 183:37–45

    Article  Google Scholar 

  94. Vladisavljević GT, Khalid N, Neves MA et al (2013) Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery. Adv Drug Deliv Rev 65(11–12):1626–1663

    Article  Google Scholar 

  95. Vladisavljević GT, Kobayashi I, Nakajima M (2012) Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid Nanofluid 13(1):151–178

    Article  Google Scholar 

  96. Vladisavljević GT, Lambrich U, Nakajima M et al (2004) Production of O/W emulsions using SPG membranes, ceramic α-aluminium oxide membranes, microfluidizer and a silicon microchannel plate—a comparative study. Colloids Surf A Physicochem Eng Asp 232(2–3):199–207

    Article  Google Scholar 

  97. Vladisavljević GT, Shimizu M, Nakashima T (2004) Preparation of monodisperse multiple emulsions at high production rates by multi-stage premix membrane emulsification. J Membr Sci 244(1–2):97–106

    Article  Google Scholar 

  98. Vladisavljević GT, Shimizu M, Nakashima T (2005) Permeability of hydrophilic and hydrophobic Shirasu-porous-glass (SPG) membranes to pure liquids and its microstructure. J Membr Sci 250(1–2):69–77

    Article  Google Scholar 

  99. Wagdare NA, Marcelis AT, Ho OB et al (2010) High throughput vegetable oil-in-water emulsification with a high porosity micro-engineered membrane. J Membr Sci 347(1–2):1–7

    Article  Google Scholar 

  100. Warkiani ME, Bhagat AAS, Khoo BL et al (2013) Isoporous micro/nanoengineered membranes. ACS Nano 7(3):1882–1904

    Article  Google Scholar 

  101. Washington C (1987) Emulsion production by microfluidizer. Lab Equip Dig 85:69–71

    Google Scholar 

  102. Washington C, Davis S (1988) The production of parenteral feeding emulsions by Microfluidizer. Int J Pharm 44(1–3):169–176

    Article  Google Scholar 

  103. Wei Y, Wang Y, Kang A et al (2012) A novel sustained-release formulation of recombinant human growth hormone and its pharmacokinetic, pharmacodynamic and safety profiles. Mol Pharm 9(7):2039–2048

    Article  Google Scholar 

  104. Wengeler R, Nirschl H (2007) Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates. J Colloid Interface Sci 306:262–273

    Article  Google Scholar 

  105. Westesen K, Siekmann B, Koch M (1993) Investigations on the physical state of lipid nanoparticles by synchroton radiation X-ray diffraction. Int J Pharm 93:189–199

    Article  Google Scholar 

  106. Wooster TJ, Golding M, Sanguansri P (2008) Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir 24(22):12758–12765

    Article  Google Scholar 

  107. Yuan Q, Williams RA (2014) Precision emulsification for droplet and capsule production. Adv Powder Technol 25(1):122–135

    Article  Google Scholar 

  108. Zhu J, Barrow D (2005) Analysis of droplet size during crossflow membrane emulsification using stationary and vibrating micromachined silicon nitride membranes. J Membr Sci 261(1–2):136–144

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bunjes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bunjes, H., Müller-Goymann, C.C. (2016). Microsystems for Emulsification. In: Dietzel, A. (eds) Microsystems for Pharmatechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-26920-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26920-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26918-4

  • Online ISBN: 978-3-319-26920-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics