Skip to main content

Surface Functionalization of Microfluidic Devices

  • Chapter
  • First Online:
Microsystems for Pharmatechnology

Abstract

Internal surfaces of pharmatechnological or biomedical microfluidic components may be functionalized—i.e., tailored or adapted to fulfill one or more specific physicochemical functions within a lab-on-chip system—by surface-technological methods selected from a number of available coating or modification processes.

Among various potential functions of a surface, its wetting behavior is of particular importance if two different phases (e.g., water and air, water and oil) are involved during operation of the system. Adhesive properties of internal walls are of major relevance in applications where particulate matter (cells, micro- or nanoparticles) plays a role: It may be necessary to prevent the adhesion of such particles on the surfaces in order to prevent clogging; on the other hand, the adhesion of cells may be aspired on certain parts of the surface. Adhesion promotion may, however, not only be an issue for the operation of an MF device but also for its manufacturing, for example for sealing or bonding processes. Frequently an undesired wall deposition of proteins or other constituents of the fluid has to be prevented by an antifouling coating or a suitable pretreatment of the surface. Coatings or surface modifications generating chemically reactive groups may be utilized to bind small molecules, polymers, biomolecules, or nanoparticles covalently to a surface. Controlling the density of charged functional groups, the ζ potential of a surface can be adjusted in order to influence, e.g., the charge of droplets dispensed from a pipette.

While so far mentioned functions of the MF device walls largely depend on their chemical composition close to the interface, specific geometrical and physical characteristics of surfaces and surface coatings may also be desired. Examples are the role of topography and Young’s modulus for the attachment of cells and microorganisms, coatings with specific electrical or optical functions involved in sensing and detection, electrowetting, or electrophoresis, and, last but not least, permeation barriers preventing the leaching of polymer constituents into the fluid or controlling gas transport through a polymer.

The present article gives an introduction to surface modification and coating processes which are established or under development in order to attain the above-mentioned surface functions. An emphasis will be laid on special requirements of microfluidic devices to be used with two-phase fluids and particulate matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandridis P, Hatton TA (1995) Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A 96:1–46

    Article  Google Scholar 

  2. Alf ME, Asatekin A, Barr MC, Baxamusa SH, Chelawat H, Ozaydin-Ince G, Petruczok CD, Sreenivasan R, Tenhaeff WE, Trujillo NJ, Vaddiraju S, Xu J, Gleason KK (2010) Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv Mater 22:1993–2027

    Article  Google Scholar 

  3. Annabi N, Selimović S, Acevedo Cox JP, Ribas J, Afshar Bakooshli M, Heintze D, Weiss AS, Cropek D, Khademhosseini A (2013) Hydrogel-coated microfluidic channels for cardiomyocyte culture. Lab Chip 13:3569–3577

    Article  Google Scholar 

  4. Asatekin A, Barr MC, Baxamusa SH, Lau KKS, Tenhaeff W, Xu J, Gleason KK (2010) Designing polymer surfaces via vapor deposition. Mater Today 13:26–33

    Article  Google Scholar 

  5. Azadi G, Tripathi A (2012) Surfactant-induced electroosmotic flow in microfluidic capillaries. Electrophoresis 33:2094–2101

    Article  Google Scholar 

  6. Bäcker M, Raue M, Schusser S, Jeitner C, Breuer L, Wagner P, Poghossian A, Förster A, Mang T, Schöning MJ (2012) Microfluidic chip with integrated microvalves based on temperature and pH-responsive hydrogel thin films. Phys Status Solidi A 209:839–845

    Article  Google Scholar 

  7. Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36:993–1017

    Article  Google Scholar 

  8. Bashir M, Bashir S, Rees JM, Zimmerman WB (2014) Surface coating of bonded PDMS microchannels by atmospheric pressure microplasma. Plasma Process Polym 11:279–288

    Article  Google Scholar 

  9. Bayer H, Engelhardt H (1996) Capillary electrophoresis in organic polymer capillaries. J Microcolumn Sep 8:479–484

    Article  Google Scholar 

  10. Besch W, Foest R, Schröder K, Ohl A (2008) Allylamine plasma polymer coatings of interior surfaces in small trench structures. Plasma Process Polym 5:105–112

    Article  Google Scholar 

  11. Bhattacharyya A, Klapperich M (2007) Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices. Lab Chip 7:876–882

    Article  Google Scholar 

  12. Bhushan B, Cichomski M (2007) Nanotribological characterization of vapor phase deposited fluorosilane self-assembled monolayers deposited on polydimethylsiloxane surfaces for biomedical micro-/nanodevices. J Vac Sci Technol A 25:1285–1293

    Article  Google Scholar 

  13. Bhushan B, Hansford D, Lee KK (2006) Surface modification of silicon and polydimethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices. J Vac Sci Technol A 24:1197–1202

    Article  Google Scholar 

  14. Biederman H (ed) (2004) Plasma polymer films. Imperial College Press, London

    Google Scholar 

  15. Blees MH, Winkelman GB, Balkenende AR, den Toonder JMJ (2000) The effect of friction on scratch adhesion testing: application to a sol-gel coating on polypropylene. Thin Solid Films 359:1–13

    Article  Google Scholar 

  16. Cai L, Wang Y, Wu Y, Xu C, Zhong M, Lai H, Huang J (2014) Fabrication of a microfluidic paper-based analytical device by silanization of filter cellulose using a paper mask for glucose assay. Analyst 139:4593–4598

    Article  Google Scholar 

  17. Chan CM, Ko TM, Hiraoka H (1996) Polymer surface modification by plasmas and photons. Surf Sci Rep 24:1–54

    Article  Google Scholar 

  18. Chang JH, Choi DY, Han S, Pak JJ (2010) Driving characteristics of the electrowetting-on-dielectric device using atomic-layer-deposited aluminum oxide as the dielectric. Microfluid Nanofluid 8:269–273

    Article  Google Scholar 

  19. Chen C, Xu P, Li X (2014) Regioselective patterning of multiple SAMs and applications in surface-guided smart microfluidics. Appl Mater Interfaces 6:21961–21969

    Article  Google Scholar 

  20. Chen S, Li L, Zhao C, Zheng J (2010) Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51:5283–5293

    Article  Google Scholar 

  21. Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R 36:143–206

    Article  Google Scholar 

  22. Cifuentes A, Rodríguez MA, García-Montelongo FJ (1996) Separation of basic proteins in free solution capillary electrophoresis: effect of additive, temperature and voltage. J Chromatogr A 742:257–266

    Article  Google Scholar 

  23. Coclite AM, Howden RM, Borrelli DC, Petruczok CD, Yang R, Yagüe JL, Ugur A, Chen N, Lee S, Jo WJ, Liu A, Wang X, Gleason KK (2013) 25th Anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication. Adv Mater 2013(25):5392–5423

    Article  Google Scholar 

  24. Cohen Stuart MA (2003) Macromolecular adsorption: a brief introduction. In: Malmsten M (ed) Biopolymers at interfaces, 2nd edn. Marcel Dekker, New York, pp 1–25

    Google Scholar 

  25. Cordeiro AL, Nitschke M, Janke A, Helbig R, D’Souza F, Donnelly GT, Willemsen PR, Werner C (2008) Fluorination of poly(dimethylsiloxane) surfaces by low pressure CF4 plasma—physicochemical and antifouling properties. eXPRESS Polym Lett 3:70–83

    Article  Google Scholar 

  26. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210(21):831–835

    Article  Google Scholar 

  27. Demming S, Lesche C, Schmolke H, Klages CP, Büttgenbach S (2011) Characterization of long-term stability of hydrophilized PEG-grafted PDMS within different media for biotechnological and pharmaceutical applications. Phys Status Solidi A 208:1301–1307

    Article  Google Scholar 

  28. Demming S, Peterat G, Llobera A, Schmolke H, Bruns A, Kohlstedt M, Al-Halhouli A, Klages CP, Krull R, Büttgenbach S (2012) Vertical microbubble column—a photonic lab-on-chip for cultivation and online analysis of yeast cell cultures. Biomicrofluidics 6:034106 (14 pp)

    Article  Google Scholar 

  29. Deng J, Wang L, Liu L, Yang W (2009) Developments and new applications of UV-induced surface graft polymerizations. Prog Polym Sci 34:156–193

    Article  Google Scholar 

  30. Deng X, Lahann J (2014) Orthogonal surface functionalization through bioactive vapor-based polymer coatings. J Appl Polym Sci 2014:40315 (9pp)

    Google Scholar 

  31. Dijt JC, Cohen Stuart MA, Fleer GJ (1992) Kinetics of polymer adsorption and desorption in capillary flow. Macromolecules 25:5416–5423

    Article  Google Scholar 

  32. Eichler M, Hennecke P, Nagel K, Gabriel M, Klages CP (2013) Plasma activation as a pretreatment tool for low-temperature direct wafer bonding in microsystems technology. ECS Trans 50:265–276

    Article  Google Scholar 

  33. Eichler M, Nagel K, Hennecke P, Klages CP (2012) Area-selective microplasma treatment in microfluidic channels for novel fluid phase separators. Plasma Process Polym 9:1160–1167

    Article  Google Scholar 

  34. Evju JK, Howell PB, Locascio LE, Tarlov MJ, Hickman JJ (2004) Atmospheric pressure microplasmas for modifying sealed microfluidic devices. Appl Phys Lett 84:1668–1670

    Article  Google Scholar 

  35. Fidalgo LM, Abell C, Huch WTS (2007) Surface-induced droplet fusion in microfluidic devices. Lab Chip 7:984–986

    Article  Google Scholar 

  36. Finke JH, Schmolke H, Klages CP, Müller-Goymann CC (2013) Controlling solid lipid nanoparticle adhesion by polyelectrolyte multilayer surface modifications. Int J Pharm 449:59–71

    Article  Google Scholar 

  37. Gao Z, Henthorn DB, Kim CS (2008) Enhanced wettability of an SU-8 photoresist through a photografting procedure for bioanalytical device applications. J Micromech Microeng 18:045013 (7 pp)

    Article  Google Scholar 

  38. Glass NR, Tjeung R, Chan P, Yeo LY, Friend JR (2011) Organosilane deposition for microfluidic applications. Biomicrofluidics 5:036501–036507

    Article  Google Scholar 

  39. Glavan AC, Martinez RV, Subramaniam AB, Yoon HJ, Nunes RMD, Lange H, Thuo MM, Whitesides GM (2014) Omniphobic “RF Paper” produced by silanization of paper with fluoroalkyltrichlorsilanes. Adv Funct Mater 24:60–70

    Article  Google Scholar 

  40. Gogolides E, Constantoudis V, Kokkoris G, Kontziampasis D, Tsougeni K, Boulousis G, Vlachopoulou M, Tserepi A (2011) Controlling roughness: from etching to nanotexturing and plasma-directed organization on organic and inorganic materials. J Phys D Appl Phys 44:174021

    Article  Google Scholar 

  41. Gomez-Sjoberg R, Leyrat AA, Houseman BT, Shokat K, Quake SR (2010) Biocompatibility and reduced drug absorption of sol-gel-treated poly(dimethyl siloxane) for microfluidic cell culture applications. Anal Chem 82:8954–8960

    Article  Google Scholar 

  42. Gross-Kosche P, Low SP, Guo R, Steele DA, Michelmore A (2014) Deposition of nonfouling plasma polymers to a thermoplastic silicone elastomer for microfluidic and biomedical applications. J. Appl Polym Sci 131. doi:10.1002/APP.40500

    Google Scholar 

  43. Habouti S, Kunstmann-Olsen C, Hoyland JD, Rubahn HG, Es-Souni M (2014) In situ ZnO–PVA nanocomposite coated microfluidic chips for biosensing. Appl Phys A 115:645–649

    Article  Google Scholar 

  44. Hamada Y, Ono T, Akagi T, Ishihara K, Ichiki T (2007) Photochemical oxidation of poly(dimethylsiloxane) surface and subsequent coating with biomimetic phosphorylcholine polymer. J Photopolym Sci Technol 20:245–249

    Article  Google Scholar 

  45. He M, Herr AE (2010) Polyacrylamide gel photopatterning enables automated protein immunoblotting in a two-dimensional microdevice. J Am Chem Soc 132:2512–2513

    Article  Google Scholar 

  46. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72

    Article  Google Scholar 

  47. Hergelová B, Homola T, Zahoranová A, Plecenik T (2012) Plasma surface modification of biocompatible polymers using atmospheric pressure dielectric barrier discharge. In: WDS’12 proceedings of contributed papers, Part II, pp 128–133. ISBN 978-80-7378-225-2

    Google Scholar 

  48. Horvath J, Dolnik V (2001) Polymer wall coatings for capillary electrophoresis. Electrophoresis 22:644–655

    Article  Google Scholar 

  49. Idota N, Tsukahara T, Sato K (2009) The use of electron beam lithographic graft-polymerization on thermoresponsive polymers for regulating the directionality of cell attachment and detachment. Biomaterials 30:2095–2101

    Article  Google Scholar 

  50. Jackson JM, Witek MA, Hupert ML, Brady C, Pullagurla S, Kamande J, Aufforth RD, Tignanelli CJ, Torphy RJ, Yeh JJ, Soper SA (2014) UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection. Lab Chip 14:106–117

    Article  Google Scholar 

  51. Jena RK, Yue CY (2012) Cyclic olefin copolymer based microfluidic devices for biochip applications: ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine. Biomicrofluidics 6:012822 (12 pp)

    Google Scholar 

  52. Jokinen V, Suvanto P, Franssilab S (2012) Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics 6:016501

    Article  Google Scholar 

  53. Kano S, Matsumoto S, Ichikawa N (2009) Surface treated PDMS by UV-Vis light applied to micro-fluidic device. In: Vengallatore S, Bagdahn J, Sheppard NF, Spearing SM (eds) Microelectromechanical systems—materials and devices II book series: Materials Research Society symposium proceedings, vol 1139, pp 121–125

    Google Scholar 

  54. Katayama H, Ishihama Y, Asakawa N (1998) Stable capillary coating with successive multiple ionic polymer layers. Anal Chem 70:2254–2260

    Article  Google Scholar 

  55. Kim D, Herr AE (2013) Protein immobilization techniques for microfluidic assays. Biomicrofluidics 7:041501

    Article  Google Scholar 

  56. Kim D, Karns K, Tia SQ (2012) Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent microfluidic western blotting. Anal Chem 84:2533–2540

    Article  Google Scholar 

  57. Kim YJ, Taniguchi Y, Murase K, Taguchi Y, Sugimura H (2009) Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding. Appl Surf Sci 255:3648–3654

    Article  Google Scholar 

  58. Klages CP, Berger C, Eichler M, Thomas M (2007) Microplasma-based treatment of inner surfaces in microfluidic devices. Contrib Plasma Phys 47:1–8

    Article  Google Scholar 

  59. Klages CP, Höpfner K, Kläke N, Thyen R (2000) Surface functionalization at atmospheric pressure by DBD-based pulsed plasma polymerization. Plasmas Polym 5:79–89

    Article  Google Scholar 

  60. Klages CP, Thyen R (2000) German Patent DE 10035177 C 2

    Google Scholar 

  61. Koh WG, Pishko M (2005) Immobilization of multi-enzyme microreactors inside microfluidic devices. Sens Actuators B 106:335–342

    Article  Google Scholar 

  62. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Article  Google Scholar 

  63. Kovach KM, Capaona JR, Gupta AS, Potkay JA (2014) The effects of PEG-based surface modification of PDMS microchannels on long-term hemocompatibility. J Biomed Mater Res A 102A:4195–4205

    Google Scholar 

  64. Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms and biomedical applications. Prog Polym Sci 32:1205–1237

    Article  Google Scholar 

  65. Launiere C, Gaskill M, Czaplewski G (2012) Channel surface patterning of alternating biomimetic protein combinations for enhanced microfluidic tumor cell isolation. Anal Chem 84:4022–4028

    Article  Google Scholar 

  66. Lee AG, Arena CP, Beebe DJ, Palecek SP (2010) Development of macroporous poly(ethylene glycol) hydrogels arrays within microfluidic channels. Biomacromolecules 11:3316–3324

    Article  Google Scholar 

  67. Lee AG, Beebe DJ, Palecek SP (2012) Quantification of kinase activity in cell lysates via photopatterned macroporous poly(ethylene glycol) hydrogel arrays in microfluidic channels. Biomed Microdevices 14:247–257

    Article  Google Scholar 

  68. Lee KK, Bhushan B, Hansford D (2005) Nanotribological characterization of fluoropolymer thin films for biomedical micro/nanoelectromechanical system applications. J Vac Sci Technol A 23:804–810

    Article  Google Scholar 

  69. Lee KS, Ram RJ (2007) Plastic–PDMS bonding for high pressure hydrolytically stable active microfluidics. Lab Chip 9:1618–1624

    Article  Google Scholar 

  70. Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882

    Article  Google Scholar 

  71. Leskelä M, Ritala M (2002) Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409:138–146

    Article  Google Scholar 

  72. Liu Z, Xiao L, Xu B (2012) Covalently immobilized biomolecule gradient on hydrogel surface using a gradient generating microfluidic device for a quantitative mesenchymal stem cell study. Biomicrofluidics 6:024111–024111-12

    Article  Google Scholar 

  73. Lugli F, Firavanti G, Pattani D, Pasquali L, Montecchi M, Gentili D, Murgia M, Hemmatian Z, Cavallini M, Zerbetto F (2013) And yet it moves! Microfluidics without channels and troughs. Adv Funct Mater 23:5543–5549

    Article  Google Scholar 

  74. Lycans RM, Higgins CB, Tanner MS, Blough ER, Scott Day B (2014) Plasma treatment of PDMS for applications of in vitro motility assays. Colloids Surf B Biointerfaces 116:687–694

    Article  Google Scholar 

  75. Ma H, Zhang M (2014) Superhydrophilic titania wall coating in microchannels by in situ sol–gel modification. J Mater Sci 49:8123–8126

    Article  Google Scholar 

  76. Martin IT, Dressen B, Boggs M, Liu Y, Henry CS, Fisher ER (2007) Plasma modification of PDMS microfluidic devices for control of electroosmotic flow. Plasma Process Polym 4:414–424

    Article  Google Scholar 

  77. Mascia L, Zhang Z (1996) Internal surface interactions in the plasma treatment of fine bore fluoropolymer tubings. Appl Surf Sci 93:1–7

    Article  Google Scholar 

  78. Matsuda T, Ohya S (2005) Photoiniferter-based thermoresponsive graft architecture with albumin covalently fixed at growing graft chain end. Langmuir 21:9660–9665

    Article  Google Scholar 

  79. Matyjaszewski K, Dong H, Jukabowski W, Pietrasik J, Kusomo A (2007) Grafting from surfaces for “Everyone”: ARGET ATRP in the presence of air. Langmuir 23:4528–4531

    Article  Google Scholar 

  80. Matyjaszewski K, Miller PJ, Shukla N, Immaraporn B, Gelman A, Luokala BB, Siclovan TM, Kickelbick G, Vallant T, Hoffmann H, Pakula T (1999) Polymers at interfaces: using atomic transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules 32:8716–8724

    Article  Google Scholar 

  81. McCarley RL, Vaidya B, Wei S, Smith AF, Patel AB, Feng J, Murphy MC, Soper SA (2005) Resist-free patterning of surface architectures in polymer-based microanalytical devices. J Am Chem Soc 127:842–843

    Article  Google Scholar 

  82. McNesby JR, Okabe H (1964) Vacuum ultraviolet photochemistry. In: Noyes Jr WA, Hammond GS, Pitts Jr JN (eds) Advances in photochemistry, vol 3. Interscience, New York

    Google Scholar 

  83. Moad G, Chong YK, Postma A, Rizzardo E, Thang SH (2005) Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer 46:8458–8468

    Article  Google Scholar 

  84. Nakayama Y, Matsuda T, Irie M (1993) A novel surface photograft polymerization method for fabricated devices. Trans Am Soc Artif Intern Org J 39:M545–M549

    Article  Google Scholar 

  85. Nakayama Y, Matsuda T (1996) Surface macromolecular architectural designs using photo-graft copolymerization based on photo-chemistry of benzyl-N,N-diethyldithiocarbamate. Macromolecules 29:8622–8630

    Article  Google Scholar 

  86. Nejadnik MR, Olsson ALJ, Sharma PK, van der Mei HC, Norde W, Busscher HJ (2009) Adsorption of Pluronic F-127 on surfaces with different hydrophobicities probed by quartz crystal microbalance with dissipation. Langmuir 25:6245–6249

    Article  Google Scholar 

  87. Niedl RR, Beta C (2015) Hydrogel-driven paper-based microfluidics. Lab Chip 15:2452–2459

    Article  Google Scholar 

  88. Olsen K, Ross DJ, Tarlov MJ (2002) Immobilization of DNA hydrogel plugs in microfluidic channels. Anal Chem 74:1436–1441

    Article  Google Scholar 

  89. Park JJ, Luo X, Yi H, Valentine TM, Payne GF, Bentley WE, Ghodssi R, Rubloff GW (2006) Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices. Lab Chip 6:1315–1321

    Article  Google Scholar 

  90. Patrito N, McLachlan JM, Faria SN, Chan J, Norton PR (2007) A novel metal-protected plasma treatment for the robust bonding of polydimethylsiloxane. Lab Chip 7:1813–1818

    Article  Google Scholar 

  91. Pei SN, Valley JK, Neale SL, Jamshidi A, Hsu HY, Wu MC (2010) Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets. In: Abstracts of the 23rd IEEE international conference on micro electro mechanical systems (MEMS), Wanchai, Hong Kong, 24–28 January 2010, pp 252–255. INSPEc accession number: 11229702. doi:10.1109/MEMSYS.2010.5442519

  92. Piao Y, Han DJ, Reza Azad M, Park M, Seo TS (2015) Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets. Biosens Bioelectron 65:220–225

    Article  Google Scholar 

  93. Popat KC, Johnson RW, Desai TA (2003) Characterization of vapor deposited poly ethylene glycol films on silicon surfaces for surface modification of microfluidic systems. J Vac Sci Technol B 22:645–654

    Article  Google Scholar 

  94. Prakash S, Karacor MB (2011) Characterization stability of “click” modified glass surfaces to common microfabrication conditions and aqueous electrolyte solutions. Nanoscale 3:3309–3315

    Article  Google Scholar 

  95. Priest C, Gruner PJ, Szili EJ, Al-Bataineh SA, Bradley JW, Ralston J, Steele DA, Short RD (2011) Microplasma patterning of bonded microchannels using high-precision “injected” electrodes. Lab Chip 11:541–544

    Article  Google Scholar 

  96. Puchberger-Enengl D, Kruztler C, Keplinger F, Vellekoop MJ (2014) Single-step design of hydrogel based microfluidic assays for rapid diagnostics. Lab Chip 14:378–383

    Article  Google Scholar 

  97. Reinholt SJ, Baeumner AJ (2014) Microfluidic isolation of nucleic acids. Angew Chem Int Ed 53:13988–14001

    Article  Google Scholar 

  98. Riaz A, Gandhiraman RP, Dimov IK, Basabe-Desmonts L, Ducree J, Daniels S, Riccoa AJ, Lee LP (2012) Reactive deposition of nano-films in deep polymeric microcavities. Lab Chip 12:4877–4883

    Article  Google Scholar 

  99. Riche CT, Marin BC, Malmstadt N, Gupta M (2011) Vapor deposition of crosslinked fluoropolymer barrier coatings onto pre-assembled microfluidic devices. Lab Chip 11:3049–3052

    Article  Google Scholar 

  100. Riche CT, Zhang C, Gupta M, Malmstadt N (2014) Fluoropolymer surface coatings to control droplets in microfluidic devices. Lab Chip 14:1834–1841

    Article  Google Scholar 

  101. Righetti PG, Gelfi C, Verzola B, Castelletti L (2001) The state of the art of dynamic coatings. Electrophoresis 22:603–611

    Article  Google Scholar 

  102. Roman GT, Hlaus T, Bass KJ, Seelhammer TG, Culbertson CT (2005) Sol-gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic mobilities and hydrophilic channel wall characteristics. Anal Chem 77:1414–1422

    Article  Google Scholar 

  103. Roy S, Yue CY, Venkatraman SS (2013) Fabrication of smart COC chips: advantages of N-vinylpyrrolidone (NVP) monomer over other hydrophilic monomers. Sens Actuators B 178:86–95

    Article  Google Scholar 

  104. Sakai-Kato K, Kato M, Toyo’oka T (2002) On-line trypsin-encapsulated enzyme reactor by the sol-gel method integrated into capillary electrophoresis. Anal Chem 74:2943–2949

    Article  Google Scholar 

  105. Sakai-Kato K, Kato M, Toyo’oka T (2003) Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip. Anal Chem 75:388–393

    Article  Google Scholar 

  106. Schmolke H (2014) Funktionale Polyelektrolytschichten für mikrofluidische Systeme. In: Fraunhofer IST, Braunschweig (eds) Berichte aus Forschung und Entwicklung IST, Band 39, Fraunhofer Verlag

    Google Scholar 

  107. Schmolke H, Demming S, Edlich A, Magdanz V, Büttgenbach S, Franco-Lara E, Krull R, Klages CP (2010) Polyelectrolyte multilayer surface functionalization of poly(dimethylsiloxane) (PDMS) for reduction of yeast cell adhesion in microfluidic devices. Biomicrofluidics 4:044113

    Article  Google Scholar 

  108. Schmolke H, Hartwig S, Klages CP (2011) Poly(acrylic acid)-graft-poly(ethylene glycol) preparation and adsorption on polyelectrolyte multilayers (PEMs) for custom-made antiadhesive surfaces. Phys Status Solidi A 208:1290–1300

    Article  Google Scholar 

  109. Schneider MH, Willaime H, Tran Y, Rezgui F, Tabeling P (2010) Wettability patterning by UV-initiated graft polymerization of poly(acrylic acid) in closed microfluidic systems of complex geometry. Anal Chem 82:8848–8855

    Article  Google Scholar 

  110. Schröder ME, Zurick KM, Mc Grath DE, Bernards MT (2013) Multifunctional polyampholyte hydrogels with fouling resistance and protein conjugation capacity. Biomacromolecules 14:3112–3122

    Article  Google Scholar 

  111. Schröen CGPH, Cohen Stuart MA, van der Voort Maarschalk K K, van der Padt A, van’t Riet K (1995) Influence of preadsorbed block copolymers on protein adsorption: surface properties, layer thickness, and surface coverage. Langmuir 11:3068–3074

    Article  Google Scholar 

  112. Seguin C, McLachlan JM, Norton PR, Lagugné-Labarthet F (2010) Surface modification of poly(dimethylsiloxane) for microfluidic assay applications. Appl Surf Sci 256:2524–2531

    Article  Google Scholar 

  113. Shah AM, Yu M, Nakamura Z, Ciciliano J, Ulman M, Kotz K, Stott SL, Maheswaran S, Haber DA, Toner M (2012) Biopolymer system for cell recovery from microfluidic cell capture devices. Anal Chem 84:3682–3688

    Article  Google Scholar 

  114. Shirai K, Mawatari K, Kitamori T (2014) Extended nanofluidic immunochemical reaction with femtoliter sample volumes. Small 10:1514–1522

    Article  Google Scholar 

  115. Spagnola JC, Gong B, Parsons GN (2010) Surface texture and wetting stability of polydimethylsiloxane coated with aluminum oxide at low temperature by atomic layer deposition. J Vac Sci Technol A 28:1330–1337

    Article  Google Scholar 

  116. Stojkovič G, Krivec M, Vesel A, Marinšeka M, Žnidaršič-Plazla P (2014) Surface cell immobilization within perfluoralkoxy microchannels. Appl Surf Sci 320:810–817

    Article  Google Scholar 

  117. Sui G, Wang J, Lee CC, Lu W, Lee SP, Leyton JV, Wu AM, Tseng HR (2006) Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels. Anal Chem 78:5543–5551

    Article  Google Scholar 

  118. Tehranirokh M, Kouzani AZ, Francis PS (2013) Microfluidic devices for cell cultivation and proliferation. Biomicrofluidics 7:051502 (32pp)

    Google Scholar 

  119. Thévenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42:7099–7116

    Article  Google Scholar 

  120. Thomas M, Borris J, Dohse A, Eichler M, Hinze A, Lachmann K, Nagel K, Klages CP (2012) Plasma printing and related techniques - patterning of surfaces using microplasmas at atmospheric pressure. Plasma Process Polym 9:1086–1103

    Article  Google Scholar 

  121. Tia SQ, He M, Kim D (2011) Multianalyte on-chip native western blotting. Anal Chem 83:3581–3588

    Article  Google Scholar 

  122. Ting YK, Liu CC, Park SM, Jiang H, Nealey PF, Wendt AE (2010) Surface roughening of polystyrene and poly(methyl methacrylate) in Ar/O2 plasma etching. Polymers 2:649–663

    Article  Google Scholar 

  123. Tran TB, Cho S, Min J (2013) Hydrogel-based diffusion chip with electric cell-substrate impedance sensing (ECIS) integration for cell viability assay and drug toxicity screening. Biosens Bioelectron 50:453–459

    Article  Google Scholar 

  124. Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7:499–505

    Article  Google Scholar 

  125. Van Midwoud PM, Janse A, Merema MT, Groothuis GMM, Verpoorte E (2012) Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal Chem 84:3938–3944

    Article  Google Scholar 

  126. Wei S, Vaidya B, Patel AB, Soper SA, McCarley RL (2005) Photochemically patterned poly(methyl methacrylate) surfaces used in the fabrication of microanalytical devices. J Phys Chem B 109:16988–16996

    Article  Google Scholar 

  127. Wen J, Legendre LA, Bienvenue JM, Landers JP (2008) Purification of nucleic acids in microfluidic devices. Anal Chem 80:6472–6479

    Article  Google Scholar 

  128. West J, Michels A, Kittel S, Jacob P, Franzke J (2007) Microplasma writing for surface-directed millifluidics. Lab Chip 7:981–983

    Article  Google Scholar 

  129. Wu H, Tian Y, Liu B, Lu H, Wang X, Zhai J, Jin H, Yang P, Xu Y, Wang H (2004) Titania and alumina sol-gel-derived microfluidics enzymatic-reactors for peptide mapping: design, characterization, and performance. J Proteome Res 3:1201–1209

    Article  Google Scholar 

  130. Wright JD, Sommerdijk NAJM (2001) Sol-gel materials chemistry and applications. CRC Press, Boca Raton

    Google Scholar 

  131. Yang WT, Rånby B (1996) Radical living graft polymerization on the surface of polymeric material. Macromolecules 29:3308–3310

    Article  Google Scholar 

  132. Ziółkowski B, Czugala M, Diamond D (2012) Integrating stimulus responsive materials and microfluidics: the key to next-generation chemical sensors. J Intel Mat Syst Str 24:2221–2238

    Article  Google Scholar 

  133. Zhang Y, Trinh KTL, Yoo IS, Lee NY (2014) One-step glass-like coating of polycarbonate for seamless DNA purification and amplification on an integrated monolithic microdevice. Sens Actuat B 202:1281–1289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-P. Klages .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eichler, M., Klages, CP., Lachmann, K. (2016). Surface Functionalization of Microfluidic Devices. In: Dietzel, A. (eds) Microsystems for Pharmatechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-26920-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26920-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26918-4

  • Online ISBN: 978-3-319-26920-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics