Skip to main content

Drug Delivery Through Microneedles

  • Chapter
  • First Online:
Microsystems for Pharmatechnology

Abstract

Drug delivery through microneedles is a new form of a pharmaceutical dosage system. While single microneedles have been clinically applied already, the out-of-plane integration of a multitude of microneedles in a pharmaceutical patch is a disruptive technology. To take advantage of micro- and nanofluidics, such active patches utilize microneedle array (MNA) technology. MNAs are microsystems that adopt their technical uniqueness by the choice of a fabrication technology. MNAs can be made of solid, hollow, porous, or dissolvable materials in a cost-effective manner by the so-called MEMS technology. However, key to their success will be a proof-of-concept in the clinic, which must demonstrate that the intradermal (nano)release of drugs and vaccines serve an unmet medical need. In this chapter, we discuss recently established MNA platform technologies and by means of a case study we assess novel opportunities for MNAs in drug and vaccine delivery arising from this novel skin interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 3M’s solid microstructured transdermal system (sMTS). www.3M.com/dds. Accessed 20 Aug 2015

  2. Boks MA, Unger WWJ, Engels S, Ambrosini M, van Kooyk Y, Luttge R (2015) Controlled release of a model vaccine by nanoporous ceramic microneedle arrays. Int J Pharm 491(1–2):375–383. doi:10.1016/j.ijpharm.2015.06.025

    Article  Google Scholar 

  3. Bystrova SN, Luttge R (2011) Micromolding for ceramic microneedle arrays. Microelectron Eng 88(8):1681–1684

    Article  Google Scholar 

  4. Cormier M, Johnson B, Ameri M, Nyam K, Libiran L, Zhang DD, Daddona P (2004) Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release 9(3):503–511. http://dx.doi.org/10.1016/j.jconrel.2004.04.003

    Google Scholar 

  5. Cormier M, Neukermans AP, Block B, Theeuwes FT, Amkraut AA (1999) Device for enhancing transdermal agent delivery or sampling. European Patent 0914178

    Google Scholar 

  6. Gardeniers HJGE, Luttge R, Berenschot EJW et al (2003) Silicon micromachined hollow microneedles for transdermal liquid transport. J Microelectromech Syst 12:855–862

    Article  Google Scholar 

  7. Gittard SD, Ovsianikov A, Chichkov BN, Doraiswamy A, Narayan RJ (2010) Two photon polymerization of microneedles for transdermal drug delivery. Expert Opin Drug Deliv 7(4):513–533. doi:10.1517/17425241003628171

    Article  Google Scholar 

  8. Glenn GM, Taylor DN, Li X, Frankel S, Montemarano A, Alving CR (2000) Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med 6:1403–1406. doi:10.1038/82225

    Article  Google Scholar 

  9. Griss P, Stemme G (2003) Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer. J Microelectromech Syst 12:296–301

    Article  Google Scholar 

  10. Henry S, McAllister DV, Allen MG, Prausnitz MR (1998) Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 87:922–925. doi:10.1021/js980042+

    Article  Google Scholar 

  11. http://echotx.com/technology/. Accessed 20 Aug 2015

  12. http://www.coriumgroup.com/. Accessed 20 Aug 2015

  13. http://www.debiotech.com. Accessed 20 Aug 2015

  14. http://www.fluzone.com/health-care-professionals/fluzone-intradermal-vaccine.cfm. Accessed 20 Aug 2015

  15. http://www.mylifetechnologies.nl/. Accessed 20 Aug 2015

  16. http://www.nanopass.com/. Accessed 20 Aug 2015

  17. http://www.nemauramedical.com/. Accessed 20 Aug 2015

  18. http://www.uneedle.com/. Accessed 20 Aug 2015

  19. http://www.zosanopharma.com/. Accessed 20 Aug 2015

  20. Jina A, Tierney MJ, Tamada JA, McGill S, Desai S, Chua B, Chang A, Christiansen M (2014) Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J Diabetes Sci Technol 8(3):483–487. doi:10.1177/1932296814526191

    Article  Google Scholar 

  21. Kim Y-C, Park J-H, Prausnitz MR (2012) Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 64(14):1547–1568. doi:10.1016/j.addr.2012.04.005

    Article  Google Scholar 

  22. Luttge R, Berenschot EJW, de Boer MJ, Altpeter DM, Vrouwe EX, van den Berg A, Elwenspoek M (2007) Integrated lithographic molding for microneedle-based devices. J Microelectromech Syst 16:872–884

    Article  Google Scholar 

  23. Lüttge R, Bystrova SN, Van Bennekom JG, Domanski M, Loeters PWH, Lammertink RGH, Winnubst AJA (2008) Integrated microneedle array and a method for manufacturing thereof. European Patent Application No. 08152571.9

    Google Scholar 

  24. Mack CA (2007) Fundamental principles of optical lithography. The science of microfabrication. Wiley, Chichester

    Book  Google Scholar 

  25. Martanto W, Moore JS, Kashlan O et al (2006) Microinfusion using hollow microneedles. Pharm Res 23:104–113

    Article  Google Scholar 

  26. McAllister DV, Wang PM, Davis SP, Park J-H, Canatella PJ, Allen MG, Prausnitz MR (2003) Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA 100(24):13755–13760. doi:10.1073/pnas.2331316100

    Article  Google Scholar 

  27. Mukerjee EV, Collins SD, Isseroff RR, Smith RL (2004) Microneedle array for transdermal biological fluid extraction and in situ analysis. Sens Actuators A Phys 114:267–275

    Article  Google Scholar 

  28. Ng S-F, Rouse JJ, Sanderson FD, Meidan V, Eccleston GM (2010) Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech 11(3):1432–1441. doi:10.1208/s12249-010-9522-9

    Article  Google Scholar 

  29. Norman JJ, Arya JM, McClain MA, Frew PM, Meltzer MI, Prausnitz MR (2014) Microneedle patches: usability and acceptability for self-vaccination against influenza. Vaccine 32(16):1856–1862. http://dx.doi.org/10.1016/j.vaccine.2014.01.076

    Google Scholar 

  30. Park J-H, Allen MG, Prausnitz MR (2005) Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release 104(1):51–66. http://dx.doi.org/10.1016/j.jconrel.2005.02.002

    Google Scholar 

  31. Perennes F, Marmiroli B, Matteucci M, Tormen M, Vaccari L, Fabrizio ED (2006) Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J Micromech Microeng 16:473–479

    Article  Google Scholar 

  32. Petersen KE (1982) Silicon as a mechanical material. Proc IEEE 70:420–457

    Article  Google Scholar 

  33. Roxhed N, Gasser TC, Griss P et al (2007) Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. J Microelectromech Syst 16:1429–1440

    Article  Google Scholar 

  34. Schoellhammer CM, Blankschtein D, Langer R (2014) Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv 11(3):393–407. doi:10.1517/17425247.2014.875528

    Article  Google Scholar 

  35. Smart WH, Subramanian K (2000) Diabetes Technol Ther 2(4):549–559. doi:10.1089/15209150050501961

    Article  Google Scholar 

  36. Suzuki H, Tokuda T, Kobayashi K (2002) A disposable “intelligent mosquito” with a reversible sampling mechanism using the volume-phase transition of a gel. Sens Actuator B Chem 83:53–59

    Article  Google Scholar 

  37. Teo MAL, Shearwood C, Ng KC, Lu J, Moochhala S (2005) In vitro and in vivo characterization of MEMS microneedles. Biomed Microdevices 7:47–52

    Article  Google Scholar 

  38. van der Maaden K, Luttge R, Vos PJ, Bouwstra J, Kersten G, Ploemen I (2015) Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv Transl Res 5(4):97–406. doi:10.1007/s13346-015-0238-y

    Google Scholar 

  39. Verbaan FJ, Bal SM, van den Berg DJ, Groenink WH, Verpoorten H, Lüttge R, Bouwstra JA (2007) Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J Control Release 117:238–245

    Article  Google Scholar 

  40. Verhoeven M, Bystrova S, Winnubst L, Qureshi H, de Gruijl TD, Scheper RJ, Luttge R (2012) Applying ceramic nanoporous microneedle arrays as a transport interface in egg plants and an ex-vivo human skin model. Microelectron Eng 98:659–662. http://dx.doi.org/10.1016/j.mee.2012.07.022

    Google Scholar 

  41. Weidle UH, Georges G, Tiefenthaler G (2014) TCR-MHC/peptide interaction: prospects for new anti-tumoral agents. Cancer Genomics Proteomics 11:267–278

    Google Scholar 

  42. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  43. Xie Y, Xu B, Gao Y (2005) Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomedicine 1(2):184–190. http://dx.doi.org/10.1016/j.nano.2005.03.001

    Google Scholar 

  44. Zaffaroni A (1981) ALZA: an enterprise in biomedical innovation. Technovation 1:135–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Luttge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luttge, R. (2016). Drug Delivery Through Microneedles. In: Dietzel, A. (eds) Microsystems for Pharmatechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-26920-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26920-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26918-4

  • Online ISBN: 978-3-319-26920-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics